, AD-A160 334  MULTI-DISCIPLINARY TECHNIGUES FOR UNDERSTANDING
TIHE YARYING SPACE-BASED-. . (U) CARNEGIE-MELLON UNIV
PITTSBURGH PR DEPT OF ELECTRICAL AND COM.

UNCLASSIFIED D CASASENT ET AL. 18 MAY F/6 2@/6

-U‘

i

----
HIDNEEN
b | E
-Hl:l--
- m [ ]]]

|
-




e | Sen Lol rwg

KRR EY

-~

T

v
M
. B ' -
_, v
Ol ~fif o 1 & ¥
N T
i = 8
© _— == «\lw m .\.
£ EEE :
3 2 33 i 4'_—___ ‘ m W A
dAd332344,1 — Es
= 23
o — ot
— —— o=
| B || S é
_— e e Q 2
_—— e = E3
!
> v me L KR .~ PR o (AR AR - Dl o .l.-- AR v h o Ja o LIRS
3 ., " .v vqn . .,u)...un‘.-. .-\..\h-\-.. . .--Jv N -TAP o2 WI&\NV \1\. 1t .' 4y By Sy s U vl o » - - - \ O % SRUE is o



o

AFOSR-TR-

ANNUAL REPORT

AD-A160 334

May 1984 - May 1985

MULTI-DISCIPLINARY TECHNIQUES FOR UNDERSTANDING

TIME-VARYING SPACE-BASED-IMAGERY
Prepared For:
Air Force Office of Scientific Research
Building 410
- Bolling Air Force Base
Washington, D.C. 20332

ATTN: Dr. Robert Buchal

Prepared By:

D. Casasent, Electrical and Computer Engineering
A. Sanderson, The Robotics Institute, Electrical and Computer Engineering
T. Kanade, Computer Science

Carnegie-Mellon University
5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213

Date: 15 May 1985




6c. ADDRESS (City, Stace and ZIP Code) B o 7b. ADORESS (City, State end ZIP Code)
Directorate of Mathematical & Information
Department of Electrical & Computer Engg. Sciences, Bolling AFB DC 20332-6448
Pittsburgh, PA 15213
8. NAME OF FUNDING/SPONSOAING 8. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicedle)
AFOSR N }j/-/ q Q‘Z( )~ X 3-C~0/00
8c. ADORESS (City, State end ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGAAM PROJECT TASK WORK UNIT
' ELEMENT NO. NO. NO. NO.
Bolling AFB DC 20332-6448 61102F 2304

P —— —
11, TITLE (Include Security Clamification)
Multi-Disciplinary Techniques for Understanding Time-Varying Space-Based Imagery

12. PERSONAL AUTHOR(S)
David Casasent, Arthur Sanderson and Takeo Kanade

136 TYPE OF REPOAT 135, TIME COVERED 14. OATE OF REPOAT (Yr., Mo., Dey) 18, PAGE COUNT
Unclassified /Am"mﬂ emom 5/84 to 5/85 85/5/10 A

16. SUPPLEMENTARYNOTATION
None




Table of Conients ”;;;- ) | . iea
fa: 1. INTRODUCTION 2
i 1.1 OVERVIEW 2
, 1.2 CONCEPTUAL FRAMEWORK FOR HYBRID OPTICAL/DIGITAL iMAGE PROCESSING 3
o 1.3 PROBLEM DEFINITION 3
1.4 BENEFIT TO AIR FORCE TECHNOLCOGY 8
ol 1.5 SUMMARY OF RESEARCH DONE IN YCAR ONE 9
AT 1.6 RESEARCH PROGRESS IM YEAR TWO 9
o 1.6.1 Optical Feature Extraction and Sub-pixel Tracking 9
_-j{- 1.6.2 Algorithms for Hybrid Digital/Cptical Representation and Matching 10
¥ 1.6.3 Image Understanding Techniques for 30 Scene Interpretation LR ]
2. GEMEPAL 3-D FEATURE EXATRACTORS AND CORPELATORS - 13
- 2.1 TARGET GENERATION 13
e 2.2 TARGET DETECTION _ 15
e 2.3 MOMEMT FEATURE SPACE : 15
[ - 2.4 CHORD FEATURE EXTRACTION . 19
2.5 SOF CORRELATORS . : 19
S5 2.6 HISTOGRAM PROCESSING : 19
N REFERENCES 23
::_‘_:j 3. SUB-PIXEL TARGET DETECTION AND TRACKING 24
< 3.1 IMAGE GENERATION 24
- 3.2 SUB-PIXEL SHIFT ESTIMATION ~ z
-~ 3.3 INTERPOLATOR SELECTION o 31
Y 3.4 DETECTOR LIMITATIONS _ 34
o 3.5 DOUBLE DIFFERENCING ' 35
:L“: 3.6 SPACE/TIME FILTERING . 35
. 3.7 FUTURE WORK , a7
) REFERENCES ' 38
.-f:: 4. MODEL-BASED- ALGORITHMS FOR HYBRID DIGITAL/OPTICAL PROCESSING 39
o 4.1 SUMMARY . : 39
“- 4.2 RAPIDBUS ARCHITECTURE 39
Ry 4.3 Probabilistic Graph Matching 4
L4 4.4 MRI Operators for Shape Representation 46
" 4.5 Texture Classification Using MRI Operators 51
o 4.6 Structural Analysis Using MRI Operators 69
- 4.7 Recursive Model Matching Algorithms 74
e 4.7.1 Feature Space 74
[ 4.7.1.1 Recursive, Goal Oriven Image Exploration 76
o . 4.7.1.2 An Example 78
155 REFERENCES 81
};3' 5. IMAGE UNDERSTANDING TECHNIQUES FOR 3D SCENE INTERPRETATION 83
N 5.1 INTRODUCTION 83
:\)3' 5.2 STEREQ BY TWOQ-LEVEL DYNAMIC PROGRAMMING 83
5.2.1 Introduction 83
[ 5.2.2 Use of Inter-scanline Constraints 84
.‘_:‘:Z 5.2.3 Correspondence Search Using Dynamic Programming 86
b3
%




= g2 STy o g n ey
‘\. : " " kil a il A el M Bt D i im0 o g a o e —

g‘ N
"
0 i
!
I :
H 5.2.3.1 Intra-scanline search on 20 plane 86
A 5.2.4 Inter-scanline search in 3D space £8
0 5.2.4.1 Consistency constraints in inter-scanline ) 91
":L\ 5.2.5 Experiments 92
o 5.2.6 Summary 94
-;}’ 5.3 GENERATING DETAILED SCENE DESCRIPTIOMS FROM RANGE IMAGES 101
A §.3.1 Introduction » 101 .
. 5.3.2 Approach 101 :
- 5.3.3 Range Data Acquisition 102
N 5.3.4 Three-dimensional Edge Detection 102
. : 5.3.5 Fitting Linear Segments ] 104
Ny 5.3.6 Connect Lines and Form Junctions 107
b 5.3.7 Convert to 3D 110
= 5.3.8 Generate 3D Faces 113
4;: 5.3.9 Multiple Views 116
. 5.4 SUMMARY 116
. REFERENCES : 118
3’: 6. PUBLICATIONS, PRESENTATIONS, AND STAFF SUPPORTED 121
5 6.1 STAFF SUPPORTED 4 121
4 6.2 PUBLICATIONS 122
i 6.3 CONFERENCE PRESENTATIONS AND SEMINARS o 123
= 7. SUMMARY _ 125
. 7.1 OPTICAL FEATURE EXTRACTION AND SUB-PIXEL TARGET DETECTION HIGHLIGHTS 125
7.2 ALGOR!ITHMS FOR HYBRID DIGITAL/QOPTICAL REPRESENTATION AND MATCHING 126
. 7.3 IMAGE UNDERSTANDING TECHNIQUES FOR 3D SCENE INTERPRETATION 127
'.‘;: Appendix A. Hierarchical Feature-Based Object |dentitication . 129
:;3 APPENDIX A REFERENCES : ‘ 132
h
':“:
@
-
5
i
I'v
I'-
3
S
8§
3
7S
K.
S T A AL L LA At e U L o




L
Y

"%
Pl St 2

L] r
LA TN,

L}
’ .
ol

Na LN
P e

',l "

14 &

<
<
>
_\'-
-':
Y.

‘.

ai«i R i e e T T e e S S
> )n.v-}} i et J‘-l'.n \.J\_' N R  a  a e e e T b T N SRR IR I A RO I D

\."

ABSTRACT

This project is a multidisciplinary eftort between 3 Departments and Principal Investigators. it
intends to combine: pattern recognition, image understanding and artificial intelljgence techniques
for space-based image processing as well as: optical and digital processing methods. Optical feature
extraction and sub-pixel target detection and tracking results are summarzied. Scene representation
and modeling work using: probabilistic graph matching, muitiple resolution rotation-invariant
operators and texture analysis are detailed. Image understanding techniques for 3D scene
interpretation discussed include 2D image-level methods (using features such as edges, lines and
corners) and 3D scene-level methods. New dynamic programming, stereo image and model building
results are included. )

KEY WORD

3D scene interpretation, artificial intelligence, feature extraction, hybrid processors, image
understanding, mulitiple resolution rotation invariance, optical/digital proceSsing. probabalistic graph
matching, space-based imagery, sub-pixel targets, texture analysis, time-change imagery.
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1. INTRODUCTION

1.1 OVERVIEW

This project is a multidisciplinary effort intended to combine methodologies for image analysis and
interpretation, and evaluate the application of this integrated approach to problems of space-based
imagery. The project has brought together research teams from within the Departments of Electrical
and Computer Engineering, Computer Science, Robotics, and Bicmedicai Engineering of CMU.

We have chosen time-varying space-based imagery as the applications domain in which to evaluate
our integrated approach. The two aspects of this domain are described below:

e Space-based imagery invoives large amounts of information and incorporates both
structural and textural properties of a scene. Efficient detection and representation of
information in the scene are essential not only to interpretation but also to the storage
and transmission of information. Scenes are predominantly two-dimensional although
light and shadows affect imaging of both structures and texture, and interpretation of
scenes at increasingly high optical resolution will require three-dimensional models.

e Interpretation of time-varying data is a primary goal of space-based image analysis and
adds an additional dimension of complexity to the problem. We have chosen to look at
three time-frame scenarios which require somewhat dilterent analysis tools. High speed
tracking is viewed as primarily a feature extraction problem and has been approached
using optical methods. Medium and long-term time change detection must be based on a
more abstract description of the scene and methods of representation and model-based
interpretation must be brought to bear.

Within the context of the applicétions domain, we have addressed the following methodological
research issues: ‘

e Optical feature extraction and detection
e Structural and textural representation and matching
o Model-based image interpretation
e Hybrid digital/optical computer architectures
These issues are fundamental to implementation and performance of analysis tools which could

imbed the inherently fast and parallel preprocessing power of optical techniques into a system which
develops and tests hypotheses about scene representations and scene modeils.

In Chapter 1 of this report, we provide a more detailed overview of the conceptual framework of our
proposed hybrid optical/digital system, define the space-based image processing problem, and
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discuss the importance of this work to Air Force technology and to related Air Force programs.
Section 1.5 provides a summary of our research up to this year. Section 1.6 provides a summary of

our current year of research, with details in Chapters 2-5.

1.2 CONCEPTUAL FRAMEWORK FOR HYBRID
OPTICAL/DIGITAL IMAGE PROCESSING

In Figure 1-1, we show the general structure for our proposed hybrid optical/digitdl system using
multiple methodologies for understanding space-based images. As shown in Figure 1-1, input images
are preprocessed and then fed to parallel optical and digital channels in which muitiple features are
-extracted. A parallel image modeling system is also shown which extracts structural descriptions of
the image. These data plus image registration and target detection information obtained from an
optical correlator channei are then used by an Al/IU system to modity the parallel input processing
channels, to assemble and interpret a time-history track file on objects of interest in the image and to
provide the necessary textural and graphic output reports.

1.3 PROBLEM DEFINITION

Advanced space-based sensor systems will provide us with high-resolution real-time multisensor
data acquisition in the near future. This will totally pollute preseht processors unless we address how
to intelliéently and timely process and handle the projected data rates. NASA and others have already
verified that the United States is capable of collecting more data than we can intelligently process
(less than 1% of all NASA data has even been looked at [Wilson and Silverman, 1979)).

The key issue in Space-Based Image Understanding (SBIU) is not to transmit every frame of data
(with 5000 x 5000 sensor elements in three bands with ten bits of data per pixel, and a 30 frame/sec
rate, this is a data collection rate of over 10 bits/sec). No existing technology can accommodate
such a high data collection rate. Therefore, attention should be given to the aigorithms required to
achieve this. But first, here are several facts about SBIU problems:

1. In space-based image acquisition, we are monitoring certain areas and regions for
diverse well-defined missions. We are only concerned with changes and do not need to
know that nothing new has occurred in the image being looked at. When we transmit
only the associated change information, we achieve a quite significant bandwidth
reduction. Thus, we should process the data from space-based sensors on-board th.e
platforms, determine image changes on-line, interpret the results and transmit only
textural and graphic output reports.

2. We know rather well where the satellite is and where it is looking and we know that ihe
scene being imaged correlates with the prior image frame or with our stored reference.
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The problem is thus different from the often discussed unbounded and unsupervised
target recognition problem. We can and must utilize this a priori information that the
frame we are investigating correlates with a previous one in our processing algorithims.

3. To provide better image registration accuracy and to facilitate pointing of secondary
sensors at given areas of interest, it is often necessary to locate key landmarks in the
image. This is also useful in determining geometrical corrections needed.

4. It is also useful and necessary to register two successive image frames for inter-frame
integration to decrease the variance of the noise and to improve the image quality. This
is essential to accommodate platform variations with titme and background drift. Often,
sub-pixel image registration is necessary. ’

5. It is obviously essential to subtract successive frames singe this provides the necessary
change detection or time-varying target data.

6. However, in most cases, the image registration in (4) is sub-pixel and thus before
performing (5), we must interpolate the images.

7. Once time-history track files of candidate objects of interest in the field-of-view of the
sensors have been obtained, a multitude of discrimination analysis techniques, Al, U,
pattern recognition and human perception algorithms are necessary to classify,
understand and interpret the time-change activity noted.

8. In advanced sensor systems; 3-D information on the scenes will be available fram stereo
salellites or other techniques. In such cases, we can fully capitalize cn the available
image information only by the use of advanced 3-D scene modeling and interpretation.
The key paint is the extraction of scene information (3-D) from time-histories of 2-D
images. '

9. To detect and describe detailed changes in the 3-D structure of scenes, it is useful to first
generate 3-D scene descriptions from the 2-D images, and then to compare the
descriptions for changes. Conventional 2-D change detection approaches are not as
useful for high resolution images of complex scenes since they do not take into account -
factors such as different viewpoints and different lighting conditions for the different
images of the scene. In order to detect changes over successive images of a given scene
obtained over time. it is useful to maintain a 3-0 model of the scene and automatically
update the model as changes occur. This requires the ability to match the model with
each new view of the scene. Matching in 3-D is more desirable than matching in 2.0
since the 3-D information is represented in a manner that is independent of viewpoint and
lighting conditions.

10. The 3-D scene mode/ is a useful central component for many aspects of the change
detection task. Not only is it useful for determining whether changes have occurred, but
it also permits model-based interpretation of new images and serves as a central
representation for accumulating 3-D scene information from various low-level experts.
QOur new research addresses these aspects of time-history 3.0 scene information.

tems 1.6 address the high throughput signal processing aspects of SBIU, whereas items 7-10
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address the advanced image understanding aspects of this problem. Table 1-1 summarized
objectives which must be attained to achieve the overall goal of SBIU. In Table 1.2, technigues
required to attain these objectives are listed, and Table 1-3 lists the disciplines which will contribute to
the achievement of our goals. As well as image processing per se, we must study the importance of
elficient database organization and manipulation since storage or transmission of a very large
database will be required for SBIU.

To properly address understanding of time:varying space-based images. we feel thag three different
SBIU time-varying image processing scenarios (Table 1-4) must be separately addressed. We
propose to study each of these during the course of our research. We distinguish the three cases by
the change rate and the domain of analysis. In the first case (rapid time-variaticns), we can ¢onsider
a missile launch. In this application, the objective is to track the time-history of the missile and to
transmit the information that a missile has been launched (from subsequent sensors, the missile’s
trajectory etc. can be obtained from our system techniques and algorithms). The second case
(medium time-variations) can concern monitoring of key sites such as airports, railroads and harbors
and know areas of anticipated concentrations of troops or armor. In this case, troop or armor
movement and aiT:.*land and sea activity can be obtained from time-varying image data. This second
scenario is typical of a case in which extensive Al and IU techniques are appropriate (i.e., the use of
informaiion on the locations of hangers, runways, railroad tracks, ter'minals. switching yards, harbor
channels, docks, piers, etc.). This also requires the iocations and registration of these items in
sequential image frames. The third case (slow time-variations) addresses urban development and
agricultural or land use activity (as in Landsat and ERTS case-studies).

Table 1-1: Objectives of Space-Based Image Processing

® Detection of image changes

©® Use of a priori knowiedge

® Location of key landmarks

® Time-history track file acquisition
© interpretation of time-history data
® 3.0 scene interpretation

o Efficient storage and retrieval of information fror:: database

The three scenarios noted in Table 1-4 constitute our definition of the SBIU problem. All cases
require the techniques and disciplines noted in Tables 1-2 and 1-3. Tne first case (rapid time-
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X Table 1-2: Image Processing Techniques Required for SBIU

1

® Image enhancement and preprocessing

)

; ? O timage registration {sub-pixel) for frame integration '
& O limage subtraction for lime-history extraction
O lmage interpolation for image subtraction
\;. ® image segmentation
' ® Feature extraction
. ® image modeling -
@ 3.0 scene modeling and interpretation
. ® Hierarchical &atabase design
Table 1-3: Disciplines Required to Achieve Real-Time Space-Based Image Processing
N - T © Pattern recognition
® image un&erstanding N
: ¢ Human perception
® Artificial 'ntelligence
® Optical Processing
© Digital Processing
N Table 1-4: Time-Change Scenarios
.
: TIME CHANGE EXAMPLES DOMAIN OF ANALYSIS
i-I Rapid Missile Launch Image Pixeis
) Medium Railroad, Airport, Harbar, Troops, Armor Scene Structure
Slow Agricultural, Land-use, Urban Development Statistical Image Modeling

variations) requires primarily sub-pixel image registration, frame integration, frame interpolation, and

image differencing. The second case requires techniques involving image interpretation, 3-D scene

modeling, 3-D matching and comparison, plus knowledge-based geometric reasoning. The third case

1!
\
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needs more statistical techniques and stalistical image models, more so than do the others. All cases
require object and scene modeling, image preprocessing and enhancement plus segmentation.
feature extraction and classification. Figure 1-1 depicts these aspects and the interactive multi-

disciplinary feedback required to solve these SBIU problems.

1.4 BENEFIT TO AIR FORCE TECHMNOLOGY

With our three scenario problem definition (Table 1-4), we now consider the myriad of Air Force
programs and technology that can benefit from our proposed research. First. we note that our
research is directed toward the development of new algorithms and their realization in a hybrid
optical/digital architecture. However, devices and architectures being developed in related Air Farce
programs in VHSIC and VLSI, systolic array processors, Josephson junction devices, etc. can also be
used for implementation of these aigorithms. Qur work will thus provide problem definition and
direction regarding algorithms for such parailel processor architectures and technology programs.
Large data storage requirements and studies of what constitutes a valid database are also integral
parts of this program. Similar Air Force efforts toward data storage and database acquisition are thus
of direct concern to this program. The Air Force programs in: intelligent sensors, inteiligent task
automation, automated manufacturing, image understanding, human perception and visual
psychophysics will directly benefit from the Vinter-disciplinary nature of our research. The large Air
Force effart in optical data processing will diréctly benefit since real-time spatial light modulators and
holographic optical elements will be needed for implementation of our algorithms in reai-time. The Air
Force programs in missile guidance require a new set of algorithms and attention to the database
requirements and performance measures used and thus they will likewise benefit extensively from this
program. Darpa/AF programs such as HALO and HICAMP wiil clearly benefit from our chosen
time-varying SBIU tasks.

The monitoring of changes and developments at cultural sites, such as urban areas and military
bases, is a very useful application of space-based sensors. The techniques we develop will aid in
detecting and describing both large-scale and detailed changes. Furthermore, the techniques
dealing with 3-D matching and comparison, and knowledge-based geometric reasoning will enhance
Air Force programs in sensing and robaotics.
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Figure 2-7: Range histogram of a MIG (64 x 64 pixels) corresponding to the
same orientation as in Figure 2-5
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o0 2.4 CHORD FEATUREEXTRACTION

i Our work on this feature extractor was summarized in Appendix B of our proposal. This technigue
‘\ . . . - .

¥ appears most attraclive for range imagery with reliable gray scale, and in th‘vs case it appears
-\.‘

Z-';_. preferable to other realization schemes. No further work on this powerful optical technique to
.

. T generate these distortion-invariant features in parallel has been performed.

L 2.5 SDF CORRELATORS

This novel class of correlator that promises distortion-invariant object identification was fully
summarized in Appendix C of our proposal. Itis thus not documented further here. Initial tests of this
technique on aircraft will be included in our 1985-1986 research as our proposed Task 7 research for
1585-1986.

o 2.6 HISTOGRAM PROCESSING

Only initial work on this proposed (1985-1986) task item was advanced. We developed routines to
compute and display histograms. We then generated range imagery of selected aircralt and

:.:‘_: investigated their histograms and their potential use in distortion-invariant object classification.

) Figure 2-5 shows the histogram of an F15 with in-plane rotations about the z axis by 0°. 30°, 60° and
_'j'f.j 90°. As seen, all histograms are essentially identical. This verifies that histograms are invariant to
ij in-plane rotations. Figure 2.6 shows the histograms for the same object in Figure 2-5 scaled in range

by a factor a. Comparing Figures 2.5 and 2-6, we note that the shapes are the same for both patterns,
but that one pattern axis is shifted. This verifies the invariance of the shape of the histogram

A distribution with object scale and the ability to determine object scale or target range from such data.
::i'_; Figure 2-7 shows histogram plots for similar object rotations for an MIG. The numbers 1.3 denote
.“,::: different portions of the aircraft (wings, fuselage, tail assembly}. A comparison of Figure 2.7 with
"Ls Figures 2.5 and 2.6 shows that the shape of the histogram can provide aircraft discrimination. This
,'j.:l; concludes our report for 1985- 1986 on our proposed Task 1 and Task 6 research.
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Figure 2-4: Examples of synthetically generated range images
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2.2 TARGET DETECTION

For moving target acquisition of such objects, we simply generate two image frames with a standard
background and with an aircraft target from our routine in Figure 2-1 inserted in each, with a
displacement of the target between two successive frames (Figures 2-3a and 2-3b). A simple
differencing of these two frames results in extraction of the target (Figure 2-3c). More advanced
(higher level, etc.) image ditterencing methods are required for other cases. A time-sequence of such
output imagery provides information for a target track file and for input to an optical Raiman filter for
state estimation and trajectory estimation. At this point, a high-resolution adjunct sensor can be

activated to track the object. Alternalively, a laser radar providing range data can be activated.

-Figure 2-4 shows typical range images of the aircraft generated on our routine in Figure 2-1.

2.3 MOMENT FEATURE SPACE

The moments of an object can be optically computed [Casasent et al, 1982). In Appendix A of our
proposal, we fully detailed our proposed moment processor for aircraft classification. This
hierarchical system employs two first-level estimators (one for aspect and one for the object class)
and a second-level Bayesian classifier (requiring a nonlinear iterative technique to achieve class and
information parameter estimation). In recent work, this algorithm has been fully encoded, but due to
lack of funds, we were unable to test it on our aircraft image data base. Initial tests 'showéd that it
provideé quite accurate object orientation estimates. For sufficiently separated classgs, it was found
to have surprisingly good noise immunity. The major attraction of this system is its theoretical basis.
We have now showed that moment features are jointly Gaussian random variables for input plane
translation, scale and rotation distortions. A Bayesian classifier is possible and optimal (however,
each object class and object aspect view must now be treated as a different image class). The
first-level estimators achieve a reduction in the aspect views and classes that the second-level systém
must search. The class estimator in this first-level of the processor uses unique organized
hierarchical tree structure methods for synthesis of the tree. The node selection and discrimination
function per node in the tree are selected automaticaily using a two-level Fisher classifier (following
the first-level multi-class Fisher classifier, employed to achieve organized hierarchical structure for
the tree). The resuitant node structure is thus not ad hoc, as is generally done. [Casasent and
Cheatham, 1985] detail the most recent and our expected performance of this algorithm (Appendix
A).
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Figure 2-1: 3-D Model-Based Object Recognition
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2. GENERAL 3-D FEATUREEXTRACTORS AND
CORRELATORS

This ECE project phase has been terminated because of the significant reduction in funds for
1985-1986. Because of the lack of future support possibility, contingency funds available from cther
sources were not spent to continue this project.

The intent of this task was to employ feature extraction and correlation techniques to locate, track
and identify Iarge'targets in 3-D in severe clutter. These output track files on candidate targets would
then be processed by the IU/Al portion of the system.

2.1 TARGET QENERATION :

Moving targets and aircraft imagery were emphasized. For'such a scenario, we proposed a quite
novel image generation software package for aircraft imagery. This routine (Figure 2 1) consists of 3
stages. The final output is a 2-D image of the aircraft as seen from any user specilied orientation
angle @ and for any object-centered rotations 0x. oy and‘oz and at any scale and resolution. The
aircraft data base consists of Soviet and U.S. military aircraft as well as commercial aircraft. Figure
2-2 shows typical images of several of these aircraft at different orientations. A most attractive aspect
of this routine is the efficiency of Step 3. Specifically, our initial calculations indicate that the required
matrix transform operations can be computed (for alil target vertices, to determine the 2-D projections
of the image to be seen) within 150usec using a quite modest array processor. This has significant
importance for PR since one can now realistically assume that any necessary reference image (for
correlation or feature extraction purposes) can be computed on-line. We also began initial efforts to
modify this algorithm to enable range images to be processed (with pixel values proportional to the

range of that portion of the target). This satisfies our promised research on the proposed Task 2 item
for 1985.19886.
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":; matching problem, i.e. obtaining a correspondence between right and left images, can be cast as a
e search problem. When a pair of stereo images is rectified, pairs of corresponding points can be
._:,..: searched for within the same scanlines. We call this search intra-scanline search. This intra-scanline
s search can be treated as the problem of finding a matching path on a 2D search plane whose axes
\:'.S.:: are the right and left scanlines. Vertically co~nected edges in the images provide consistency
x constraints across the 2D search planes. Inter-scanline search in a 3D search space, which is a stack
‘_:'_.:: of the 2D search planes, is needed to utilize this constraint.
3 |
::j-:: Our stereo maitching algorithm uses edge-delimited intervals as elements to be matched, and
= employs the above-mentioned two searches: inter-scanline search for possible correspondences of
2l ‘connected edges in the right and left images, and intra-scanline search for correspondences of
edge-delimited intervals on each scaniine pair. Dynamic programming is used for both searches
:'_:'.; which proceed simultaneously at two levels: The former supplies the consistency constraints to the
NN latter, while the latter supplies the matching score to the former. An interval-based similarity metric is
‘. used to compute the score.
\ in order to pursuecthe problem of high-level model maintenance independent of the current state of
&5 ) the low-level image analysis research, we have chosen to investigate model buiiding using
e . rangefinder data, which i already three dimensiunal. Specificaily, we have developed techniques for
: ;.f extracting detailed, complete descriptions of polyhedral objects from light-stripe rangefinder data,
s 3 The descriptions are in the form ot 3D faces, edges, verticés. and their topology and geometry. A
N range image is first segmented into edge points. A line drawing is then obtained by fitting. linear
',_ y segments to the points in the image, and refining the segments to eliminate gaps. Faces are then
jﬁfj generated from the line drawing. Interestingly, although the final description is in 3D, most of the
f f- processing is done in the 2D image space. This work will be applied towards the goal of obtaining a
':': full symbolic description of a scene from range data obtained from multiple viewpoints. Our 3D model
' y building and updating resuits are detailed in Chapter 5.
~ >
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expansions of Gaussian kernels and will have magnitude of response independent of
feature orientation and phase angle of response which provides information about
orientation. The spatial and frequency domain properties of these operators have been
studied and an approximate MR! operator which uses ditference of shifted Gaussian
kernels has been derived and shown to be computationally efficient due to the scaling
and shift properties of the Gaussian kernel. The MRI operators have been applied to
aerial images of objects and textures.

e Texture Analysis - The MRI operators described above have been used to characterize
and classify textures from aerial images. This set of muitiresolution operators permits
classification of texture independent of the size and orientation of the texture pattern
itself. The statistical distribution of the magnitude responses is analyzed across the set of
operators for regions of the image. Correlation with the corresponding magnitude range
and the corresponding phase distribution provides information on the relative scaie and
the relative orientation. Experiments on textures from aerial images and textures from
simple patterns have been carried out and compared 0o previous texture energy
operators.

The alQorithms studied in this section reflect the interdisciplinary nature of the project. The MRI
operators and associated texture measures are particularly well-suited to parallel or optical processor
implementation. They will be implemented and evaluated on the array processor with RAPIDbus host.
Our formulation of:the recursive model-matching algorithms is also intended for implementation on
this type of architecture with extensions .which may integrate symbolic and numerical processing.
The interactive ’.use of parallel and optical preprbcessing with hypothesis formation and adaptive
search strategies will be natural continuation of the work completed. _ -

1.6.3 Image Understanding Technigues for 3D Scene Interpretation

The problem of detecting three-dimensional changes in a complex urban scene is a very difficuit
one, particularly since any information extracted from the complex images is highly incomplete and
contains many errors. Therefore, we have thus far concentrated mainiy on the problems of extracting
information from such images and accumulating the information in a 3D séene model.

In this report, we describe results in two aspects of these problems: low level image analysis and
high-level model maintenance. The goal of low-level image analysis is to determine a set of 3.
dimensional line segments in the scene which correspond to building boundaries. The first step in
such a process is to map the two-dimensional image into a 3-dimensional scene. One method of
doing this is to perform stereo matching on a pair of images and use triangulation to determine the
third dimension.

We have developed a stereo algorithm using the technique of dynamic programming. The stereo

A S TSN T TR
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oy This effort included attention to moment, chord and other optically-generated feature spaces.
Architectures for each of these methods were devised and initial results were obtained. These

-_f,: showed : the ability to optically implement various feature extractors: the architecture for a hybrid
-\ » Y . .

3.; optical/digital moment processor, successful initial tests of this architecture on®a ship image data
:':? base and a robotic pipe part data base: new resuits on the accuracy of distortion parameter

estimation with this processor, an advanced correlation SDF synthesis method and most successful

initial test results of it on ATR vehicles.

N
o Our time change detection work has achieved various significant results and demonstrations of the
' ability to detect sub-pixel target: rearrangement of our software to insure proper statistical
& characteristics of the generated scenes; the development of new single differencing methods that
-ﬂ_'; prove promising for clutter suppression; the initial formulation of general space/time filtering for
::: target enhancement and.-background suppression; the investigation of detector limitation effects.
, Our investigations have revealed a potential nonzero mean problem in the correlated hoise images
" with high correfation coefficients. This problem is overcome by appropriate modifications to our
- software. Our soffware is also rearranged to provide a more. unified control of the various parameters
: A characterizing the synthetic image. We have observed that while the exponential sub-pixel shift
estimator performs better than the parubolic estimator for the synthelic data, the reverse is true for
LFM signals. This indicates the need to consider both sub-pixel estimators in the future. Our efforts
™ have also pointed towards more sophisticated space/time processing methods for better clutter
‘ suppression.
)
::j 1.6.2 Algorithms for Hybrid Digital/Optical Representation and Matching
‘ -
. This phase of the project has focussed on the development and evaluation of methods which yield
' representations of structural and textural information in an image, and may be used for matching
- images to scene modeis. The principal resuits achieved in this research include:
e Probabilistic Graph Matching - Attributed graph structures are used as models of
- structural and statistical information in the image. Matching of these graph structures
o using probabilistic similarity methods poses a number of interesting problems in the
a mathematical formalism, in the computational matching algorithms, and in the application
e of these methods to real images. We have investigated methods of subgraph
e decompaosition which permit branch-and-bound search of the matching tree and provide
¥ :‘ efficient pruning of the possible matches.
N
‘_ o~ e Muitiple Resolution Rotation-invariant Operators - The MRI (Muiltiresolution Rotation
: Invariant) operator and the MRD (Muitiresolution Difference) transform have been
o introduced to extract structural and textural teatures of images for use in matching and
o interpretation phases of analysis. The MRI is a complex operator derived from derivative
T
x
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'-*"- 1.5 SUMMARY OF RESEARCH DONE IN YEAR ONE

o In our first year of research, we focused on the development and evaluation of methods which yield

}‘::_I representations of structural and textural information in an image. and relate these representaticns to 1

; object and surface contour properties of the scene. The techniques studied included Probabilistic
-~ Graph Matching, Multiple Resolution Structural Basis Functions, and Téxtural Surtace Modeis. The

e structural basis function and texture models were found to be particularly well suited to paralle! or
h’} optical processor implementation. Two digital processing facilities for use in this prégram were also

::E:‘ assembled: the RAPIDbus architecture, and an Optical Data Processing. Digital Processing and
Simulation Fagcility.

We alsa achieved a major effort on the extraction of time-varying sub-pixel targets in noise. This
';'.:,' time-change scenario concerns applications such as the detection of missile launches or aircraft in
' fight. In the first year, we successfuily demonstrated the conceptual ability to detect and track
‘. sut;-pixel targets.

:;':f In the 3D change detection task, we achieved results in two aspects: the low-level problem of
L 1 analyzing images and the high-level problem of representing, construciing. and updating the scene
- model. We de&eloped techniques for ext_racﬁng buildihg structures from l'iigh resolution aerial

images of urban scenes, including lines not originaily found but predicted by the model. Image lines _

(" were classified as building boundaries or other lines which arise from texture and shadow
2 boundaries. We also experimented with efficient methods of searching a line image in order to form
junctions which ¢an then be used for stéreo matching.

I At the higher level of processing, we developed techniques for representing, constructing, and

: updating the scene model, using task-specific knowledge.

¥ 1.6 RESEARCH PROGRESS IN YEAR TWO

Y

::; 1.8.1 Optical Feature Extraction and Sub-pixel Tracking

‘_.; The optical feature extraction phase of this project has been terminated except for a small synthetic
;3';2 discriminant function (SDF) effort we still report upon (for aircraft) in our 1985-86 report. This was
,- necessary because of the reduction in ECE funding for year 3 to gne-third of our prior year 2 level.

':L Our year 2 progress and the proposed tasks for year 3 work included in the new task list are all

< . addressed herein and terminated (except for the one SDF effort noted above). Qur final report on
:: these is contained in chapter 2, appendix A1 and the appendices of our proposal referenced in

‘ : chapter 2.

Y
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3. SUB-PIXEL TARGET DETECTION AND
TRACKING

In our year 2 effort, we investigated several issues concerned with the detéction and tracking of
sub-pixel targets. These issues include improved database generation, selection of optimal sub-pixel
location estimators and interpolators and quantification of detector limitations. In this chapter, we

present the various results obtained in these efforts.

3.1 IMAGE GENERATION

Our year 1 report fully outlined the software needed for the generation of synthetic imagery being
used for simulation.‘The staring sensor image I(x,y) consists of three separate images : a sub-pixel (of
extent less than 1 pixel in the detected image) target with a constant value, Gaussian correlated noise
(CN) image with prescribed mean, variance and correlation coefficients to simulate’ the clutter
background and uncorrelated white Gaussian noise (UCN) image of zero mean “and p'rescribed
variance to simulate the instrumentation noise. These ¢an be generated as below.

Let g(x,y) denote a NxN array of white, Gaussian random numbers of zero mean and unit variance.
Such an array can be obtained from the IMSL software package [IMSL1982]. Then a zero mean CN
image f(x,y) with variance o2 and correlation coefficients Py and Py ¢an be obtained by the following
-0 digital infinite impuise Response (IIR) filtering.

fixy) = =p,p flx=ly=D+p flx=L)+p fixy=D+a(l=p, =0, +p.0) g (xy)
(3.1)

These CN images are used to simulate clouds at various heights. Different cloud levels are
characterized by different means, variances and correlation coefficients. Because of the small time
interval between successive image frames, we assume that the CN images are coherent between
successive frames{Rauch 1981). This property is easily accomplished in our software by maintaining

the seed value for the random number generator (RNG) to be the same. On the other hand the UCN
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image is used to model instrumentation noise and it is independent from frame to frame. UCN can be
easily generated by muitiplying the g(.+) of €q.(3.1) (obtained with different seeds) by proper
consiants. The sub-pixel point target is modeled as zero outside a constant square region (whose

- dimensions are less than 1 detector image pixel) in the high resolution image.

The CN, UCN and target images are combined to yield a high resolution (532x532 pixel) image.
- Overlapping blocks of approximate size 8x8 are then combined with the help of a blur function to yield
- the detector image (x.1) of size 64xG4 pixels. The biur function is constant in the interior of a 8x8
region and has Gaussian tails at the boarders. Sub-pixel motion of the target can now be easily

simulated by moving the taiget oy integer pixels in the high resolution iiagery.

While the above procedure of generating a staring sensor image by combining CN, UCN and sﬁb-
pixel targets at high resolution and blurring them seems satisfactory, we observed that the detected
s images had a significant non zero mean. To detect the source of this discrepancy, we conducted an
investigation of the statistical parameters yielded by the IMSL programs.

The mean of the rapdom array g(x,y) of size NxN is obtained as

Z Z 2(xy). G

i =t
. £ N x=1 y=1

-

It can be easily shown [Papoulis] that th_i$ mean estimator is unbiased and has a standard deviation of
(a/N) where ¢ is the variance of the noise g(xy). For the images of interest, ¢ = 1 and N = 500
yielding an expected standard deviation of 0.002 in the estimated mean. In Table 3-1, we show the
estimated means and variances as well as the theoretical standard deviation in this estimated mean as
0 a function of the image size N. It can be seen from this table that the estimated means are well within
(one o) their expected statistical fluctuations. Thus the RNG being used seems satisfactory.

For a512x512 UCN image g(x.y), the estimated mean f; . is of the order 0.002. When this UCN image
is input to the 2D digital IR filter of eq.(3.1), we can show that the resulting CN image f(x,y) has

a0t 42 8 a8«

following estimated mean.

(1+p)<1+p,)1"’
YT e pa-p i

(3.3)

o In our simulationg = landp = P, = 0.95. Thus, ﬁf

variation of almost 0.08 can be seen in the CN image mean as a result of variation of 0.002 in the UCN

is about 40 times a3 large as ﬁg. Thus a
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SIZEN Mean Estimate St.Dev{p} Variance Estimate 2

10 0.00218 (1/10) 0.9488
S0 -0.01724 (1/50) 1.0018
64 -0.00181 (1/64) 0.9843
128 0.00548 (1/128) 0.9947
256 0.00252 (1/256) 0.9961
512 0.00055 (1/512) 1.0028

Table 3-1: Measured estimated statistical parameters for UCN data
withy =0,0 =1
mean. This ampilification factor increases as pxand P, values approaches 1. As an example, ﬁ. Y is
about 200 times as large as ‘13 for Py=P,= 0.99. This problem is illustrated in Table 3-2 where we
show the estimated means of a CN image for various Py=p,=p values.

- P,=P,=p Estimated Mean 5

00 . -00004
0.5 -0.0014
0.75 -0.0034 _
0.90 -0.0098
0.95 -0.0217
0.97 -0.0388

099 0:0683

Table 3-2: Measured mean estimates for a CN image of size 532x532

To overcome this problem of non-zero mean amplification due to digital IR filtering, we forced the
data arrays to be of zero mean at all points in the processing. This is accomplished by estimating the
mean valuesﬁ. at various‘ stages and then simply subtracting them from the data. This process
resulted in a mean value of -3.3x10”7 (close to computer precision) for the CN image whereas it was
.2.18x10'2 before this processing. This important check is now incorporated into our image
generation software.

Once the high resolution (§32x532) image containing CN, UCN and sub-pixel target is obtained, it is
converted to a sensor image (64x64) using a blur function b(x,y). This function b(x,y’) has a constant

value 1 in the center and decreases monotonically in a Gaussian error function manner towards the

edges. Such a biur function model accounts for finite aperture effects in many imaging systems[Hall].
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For simplicity of analysis, we use a rectangular blyr function model instead of the correct Gaussian
function. i.e. we assume b(x.1) to be 1 inside a square region of dimensions PxP and zero outside.

Then the detector image J(x.1') is obtained from the high resolution image /(.x.y') as below.

P
> Z St P=1), j+ Py=1))

=l J

dixy) = -l—

, (3.4)
P

Since the operation in eq.(3.4) is linear.d(x.)) is also Gaussian and can be characterized using only
first and second order moments. Since f{x.y) is of zero mean, so is d(x.j).

analytically derive the second order statistics of d(x.y).

It is instructive to

E{d(x.y)d(x+ Ax,y+ Dy}

P P P
=—1:}: > Z E{li+ P(x=1).j+ P(y= 1)) flk+ P(x+ Ax~1)./+ Ply+ Ay=1))}
Pz j=1 k=1 l= :
P P P P
_I_Z Z Z 3 [o%p |PAx+k=i] , |PAy+I-ily
P! i=1 j=1 k=1 I=1 * ’
o p P .
= _4_{ pxll’Ax-l-k-l‘} {Z Zp 'PAy'Fl-jl} (35)
P izl k= j=1 I=1

To determine the variance of the detector image, we use Ax = 0 = Ayin eq.(3.5) along with the fact
the terms inside the double sums depend only on the difference in the indices to obtain the following.

Bhpltly.gp 3 a-

k==P

Var{d(x.y)}"—{P Z 1- I) lkl}

k==pP
2 P
gt PAl=p)=2p(l-p)

{l’(l- p:) = 2p(1- p:)
(1-p,)

t-p,)

pei (3.6)

This expression is used in Table 3-3 to show how the variance of the detector image changes as a
function of detector size P and original CN image correlation coefficients. We see from this table that
the variance decreases as the blur function size increases and as the original CN image becomes
uncorrelated. We see that for p = 0.95 with P=38, the detector image has a variance of 0.771 instead of
one. This discrepancy is taken into account in evaluating the performance of our various algorithms
for sub-pixel target detection and tracking. These analytical results were compared with
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calculated/measured estimates of variance of synthetic images and very good agreement (only 2%)

error was observed.

Correlation Detector Size P

Coelfficient p 2 4 8 12
0.0 0.250 0.063 0.01€ 0.007
0.5 0.563 0.266 0.098 0.049
0.7% 0.766 0.525 0.289 0.178
0.90 0.903 0.776 0.598 0.471
0.95 0.951 0.882 0.771 0679
0.97 0.970 0.927 0.855 0.791

0.99 0.990 . 0975 0.949 0.924

Table 3-3: Theoretical detector image variance as a function of detector size
P and CN image correlation coefficientp= p = Py

Finally, analytical results are derived for the correlation coefficients p x’and py' of the detector
image d(x.y). Thi§ is achieved by using (Ax =1, Ay = 0)and(Ax = 0, &y = 1) separately in eq.(3.5).
After tedious, but straight forward algebra, we obtain ‘-

»
p(1=p)

Px’= 2 P,
PA=p)=2p(1-p,)
and
P,
p(1=p)
p, = S @7

’ »
PA=-p)=2(1-p,)

The analytical relations in eq.(3.7) are used in Table 3-4 to show how the correlation coefficients of
the detector image d(x.) are affected by p and P. This clearly shows that the increasing P or
decreasing the p value of originai CN image leads to decrease in the detector image p values.

While the ahbove theoretical analysis was carried out with the assumption of rectangular biur
functions, experimental resuits indicate no significant diflerences in the estimates for Gaussian blur
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Blur Size P
P =P,=P 2 4 8 12

0.80 0.720 0.563 0.358 0.245
0.85 0.786 0.653 0.458 0.334
0.90 0.855 0.755 0.590 0.469
0.95 0.926 0.870 0.766 0.676
0.97 0.955 0.920 0.852 0.789
0.99 0.985 0.973 0.948 0.923

Table 3-4: Theoretical correlation coefficients in the detector image as a
function of blur size P and original CN correlation coefficient p

functions. The various observations noted in this section are incorporated in our software to provided
a unified framework for image synthesis.

3.2 SUB-PIXEL SHIFT ESTIMATION

An important aspect of our image sequence processing is the estimation of sub-pixel shift in the
background CN images between successive frames. This shift is then used aiong with all interpolators
to produce two aligned images. These two properly aligned images are then subtra.cted fr-om each
other to enhance the target and suppress the background. In our year 1 report, we investigated the
use of 4 sub-pixel estimators, namely (i) gradient-based estimator, (i) exponential model estimator,
(iii) parabolic model estimator, (iv) Least Mean Squared (LMS) estimator. At that time, we showed
through simulation that the exponential model based sub-pixel estimator performs best as this model
matches precisely with the correlation function of the CN data. In tﬁis seption, we present our resuit
on the use of the two non.-parametric methods (parabolic and exponential) on a more general data
sequence. |

Because of the ease with which we can contro! its bandwidth, duration and time bandwidth product,
we have chosen a linear frequency modulation (LFM) signal for our investigation. The puise
compression ratio (PCR) of this LFM sequence is defined as the ratio of the uncompressed pulse
width to the compressed pulse width, or the product of the pulse spectral bandwidth B and the
uncompressed pulse width T. Thus, PCR is equal to the time bandwidth product. The sub-pixel delay

estimates obtained for 3 different PCR values and 3 ditterent sequence lengths are shown in Table
a5, j .
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PCR

22.5

37.5

......
........

Sequence
Length

300

900

1500

300

900

1500

1500

Estimator

Parabolic
Exponential
Parabolic
Exponential
Parabolic
Exponential
Parabolic
Exponential
Parabolic
Exponentiél
Parabolic
Exponential
Parabolic
Exponential
Parabolic
Exponential
Parabolic
Exponential

.............

Estimated Delay

0.1
0.071
0.062
0.088
0.068
0.092
0.069

0.091

0.068
0.086
0.069
0.097
0.070
0.094

' 0.067

0.096

0.067.

0.096
0.067

dB (far better than observed with the synthetic images).

0.2
0.142
0.132
0.175
0.145
0.184
0.148
0.181
0.147
0.192
0.150
0.194
0.151
0.188
0.146
0.183
0.147
0.193
0.147

Table 3-5: Sub-pixel delay estimates for the LFM signal

--------

[N

0.4
0.284
0.306
0.352
0:342
0.369
0.350
0.364
0.349
0.386
0.358
0.391
0.359
0.381
0.355
0.391
0.357
0.393
0.358

One can see from Table 3-5 that increasing sequence length improves the estimation accuracy in
general and increasing the PCR also improves the estimation accuracy. In general, the parabolic
estimator seems to outperform the exponential estimator. The exponentiai estimiator seems to
perform better for large sub-pixel delays, short sequences and low PCRs. As will be seen in the next
section, use of LFM signals enables us to observe the effect of estimator inaccuracies on the process
performance without worrying about the interpolators. This is because, once the sub-pixel shift is
estimated, it can be used in the analytical expression for LFM signal to obtain an ideally interpolated
signal. With this analytically interpolated image, we observed background suppression of almost 50

The estimated sub-pixel shifts for the synthetic images are shown in Table 3.6. We see from this
table that the exponential estimator outperforms the parabolic one in all cases. This is because the
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synthetic images being generated have exponential corrclation functions. Since such correlation

structure can not always be guaranteed, it is decided to pursue both estimators in future.

Estimated Shifts

Exact Shift Parabolic Exponential

(0.25,-0.25) (0.184,-0.174) (0.227,-0.237)
(0.25, 0.25) (0.186,0.174) (0.232, 0.233)
(-0.25,-0.25) (-0.184,-0.173) {(-0.219,-0.238)
(-0.25, 0.25) (-0.181,0.171) (-0.234, 0.239)

Table 3-6: Sub-pixel shift estimates for the synthetic CN imagery

3.3 INTERPOLATOR SELECTION

After the sub-pixel shift between two successive frames is estimated, we havé to interpolate one of
the two image frames to align it with other. We will denote the two detector image frames by
dl(x. y)and dz(x. ») and we denote the interpolated image 1 by ‘71 (x,y). Then the performance of the
interpolation is estimated by the following measure known as the Background Suppression Ratio
(BSR) | ‘ )

Var{d(x y)}

BSR=10-log Vo r{dl(x. - Jl(x. ! 3.8)

This BSR measure is useful in evaluating the performance of the estimators and interpolators
separately.

The objective of the interpolators is to produce al(x. y) which is a shifted version of d(x,y), namely
dl(x.y) = dx (x+ox,y+Ay) 3.9)
where A xand &y denote the shifts in x and y directions. We consider several interpolator schemes to
be discussed below.

The 2-D linear interpolator estimates the value dl (x+ Ax,y+ Ay) from its 4 nearest neighbors as
below. '
d,(x)=(1-A )1 =8y (x))+ dx(1=Ayd(x.y+ 1)+

Ay(l- Ax)dl (x+1y+ AxAyd1 (x+1y+1) (3.10
where Ax 2 0andAy20. The correctness of €q.(3.10) can be easily seen by using Ax=0= Ay
which yields d (x.y)=d (x.).

........
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_::j The 2-D quadratic interpolator uses a 3 x 3 array of values in :/] (x.y) as below to yield the estimate
Ee (.

s d, (=Y A ] IX)

\.:‘
> where
9
183 , o,

' (X]=[05ax(Ax=1) (1=-4ax) 05axAx+ D)

1\ -

W [Y]=[05Ay(Ax=1) (1=A)) 0583Ay+1)

.:‘

> and

[ d(x=1y=1) d(x=1y) d(x=Ly+1l)

s

- A= | dxy=1)  d(xy)  dxy+])
& | |
i [ d(x+1y=1) d(x+13) d(x+ly+D) | (.11)

:'.:~ The cubic spline interpolators are discussed thoroughly elsewhere [Hou and Andrew] and it is
i:' probably sufficient to point out the fact these-are based on local piecewise poiynomial fit to the

available data. We carry out this cubic spline interpolation by using IMSL software. One can easily see

',}: that the computational complexity of the interpolators increases as we go from linear interpolation to
I:‘ quadratic method to cubic spline based method. - )

!

We can analytically predict the BSR to be observed. The numerator of eq.(3.8), namely,
. 3 Var {dl( x.»)} is given by o® whereas the denominator of eq.(3.8) is as below. We make the assumption
3‘;.: of perfect interpolation. Then,

o Var{d (xy)-d, (.} = 20"~ 2.Cov {d,(x.5). 4, (x.))}
o =20'=2E{d(x.y)d(x+ Ax,y+ Ay)} (3.12)
_'-‘;'.‘ For the detector image d(x, y), the required covariance can be shown to be given as
»
"::_.
& -
e
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g
-\ Cov{dix.y)d(x+ A x y+ D))}

o (PHaN=pl)=2p 17BNy 0 B =B

. =a’

9 P1=p')=2p (1=p)

o (P+ (=) = 2p (B4 (PH1(BY 4 =%

N . . - - . (3.13)
Pl -pi.)—Zp}A(l-pf)

0 " The analytically derived cross covariances for ¢ = | (equivalent to detector image correlation
coefficients) are shown in Table 3-7 for P = 8 and Py=P,= 0.95. Note from this table that the
) correlation coefficient of the covariance vaiue (not p) changes from a maximum of 1.0 (when the two
images are perfectly aligned) to a minimum of 0.784 (when one image is shifted by 0.5 pixels in each

- ‘ direction with respect to the other).

§ Vertical- i Horizontal Sub-pixel shift '

; 0500 -0.375 0250 -0.125 0000 0125 0250 0375  0.500
s 0500 0850 0879 0902 0917 0822 0917 0898 0866 0817
\ -0.375 0879 0.909 0.932 0.948 0.953 0.948 0.929 0.895 0.844

0250 0902 0832 0.956 0.972 0.978 0.972 0..953 0918  0.866

. _ -0.125 0917 0.948 0.972 0.988 0.994 0.988 0.968 0.933 0.880
) ‘ 0.000 0.922 0.953 0.978 0.994 1.000 0.994 0.974 0.939 0.886
:Zj:: 0.125 0.917 0.948 0.972 0.988 0.994 0.988 0.968 0.933 0.880
‘ ” 0.250 0.898 0.929 0.953 0.968 0.974 0.968 0.949 0914 0.863

0.375 0.866 0.895 0.918 0.933 0.939 0.933 0914 0.881 0.831

0500 0817 0844 0866 0880 0.886 0880 0863 0831 0784
Table 3-7: Correlation coefficient of Cov (not p) comparison between

- two detector images with difterent sub-pixel shifts
.

For a sub-pixel shift of (0.25,-0.25), Table 3-7 indicates that the two image frames have a correlation
\_‘.:3 coefficient of 0.953 yielding a variance in the difference image of 0.069 according to q.(3.12). The
‘ experimentally observed variance of the difference image is 0.061 agreeing well with our theoretical
i results. Then the limit on BSR achievable seems to be more fundamental than the simple interpolation
problems. Based on this, the simple 2-D linear interpolator seems to be our best choice as it needs the

v minimum computational complexity.
. \




3.4 DETECTOR LIMITATIONS

OQur previous simulations do not take into account the fact that the correlation plane detector
needed for sub-pixel shift estimation suffer from nonidealities such as fimited dypamic range (DR),
detector noise and detector area. Vijaya Kumar et.al. [Kumar) have previously investigated the effects
of finite detector area on parabolic sub-pixel shift estimators and have shown that these introduce
small biases in the estimated shifts. These sub-pixe! shiit estimators use the central 5x5 region of the
~orralation plane and the acceptable DR limitations on the detector (about 30-50 dB) seemn to pose no
problems in accurately detecting these correlation values. This is because of the large correlation

coelficients of the CN part of the image.

To observe the effect of detector noise on sub-pixel shift estimators, we added uniformly distributed
random numbers to the central 5x5 region correlation plane values. The variance of this uniformly
distributed numbers is chosen such that signal to noise ratios (SNRs) of 20, 30, 40 and 50 d8 are
obtained in the detector plane. The sub-pixel shift estimates for various SNRs are shown in Table 3-8.

LBl oad . anle an ket And unie |

iy Estimated Shifts
Correct Shift SNR(dB) Paraboli¢ Exponential
(0.25,-0.25) 20 (0.183,-0.173) (0.226,-0.235)
30 (0.184,-0.173) (0.226,-0.236)
40 (0.184,-0.174) (0.227,-0.237)
50 (0.184,-0.174) (0.227,-0.237)
(0.25, 0.25) 20 (0.186, 0.172) (0.231, 0.233)
30 (0.186, 0.171) (0.232, 0.233)
40 (0.186, 0.171) (0.232, 0.233)
50 (0.186, 0.171) (0.232, 0.233)
(-0.25,-0.25) 20 (-0.183,-0.171) (-0.222,-0.236)
30 (-0.182,-0.173) (-0.220,-0.238)
40 (-0.182,-0.173) (-0.219,-0.238)
50 (-0.182,-0.173) (-0.219,-0.238)

Table 3-8: Sub-pixel shift estimates for various detector plane SNRs

Comparing Tables 3-6 and 3-8, we see that SNRs higher than 40 dB have very little effect on the

estimated sub-pirel shifts. Thus SNRs of 40 dB are required in the correlation plane.
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3.5 DOUBLE DIFFERENCING

The approach to background suppression discussed so far has been to estimate the sub-pixel shift
followed by a first difference operation. In this section, we present some preliminary resulits indicating

the role of double differencing for target detection and tracking.

Let ‘lI (x.3). d (x)) and d‘(x. )) represent three successive image frames in which the target and the
background are moving at different velocities. The single difference image is given by -
dexy) = |d (xp)=d (x.9)] (3.14)

whereas the double differencing yields

A(x.9) = 1054 (x.9)=d, (x.) +0.5d (x)] | (3.15)

in Fig. 3-1, we show the'results obtained by these processes on three images. The top thrée images
in the figure are three detector images a’1 d2 and dl. The CN background in a'2 is shifted by (0.25,0.25)
with respect to the background in dl. and the CN background in dJ is shifted by (0.25,0.25) with
respect to the background in dz. The target in all three detector images is of size equal to one
detector plane pixel and is of uniform intensity of 2, while the variance of CN background is
approximately one. The target is moving at a cdnstant velocity with a horizontal shift of 3 detector
pixels and a vertical shift of 2 detector pixels between. each adjacent frames. We see from the two
single difference images in the second row of this figure that the background is_not suppressed
completely. On the other hand, doubie differencing result shown in the last row of this figure displays
a clear track of the target movement. One should keep in mind that the images in Fig. 3-1 are
thresholded optimally and thus may not convey the complicated nature of the processing.

The results presented in this section are only preliminary. Some year 3 effort will be devoted to
analyzing the capabilities of this double differencing. The relevant issues include the BSR achievable,
the quantization eftects, the resulting frequency responses and the need or lack of need for
interpolation. Fruitful research in this direction is anticipated for year 3,

3.6 SPACE/TIME FILTERING

The single differencing and double ditferencing approaches discussed earlier represent two special
cases af a more general philosophy of target detection and tra:.'~i»g known as "s;;ace/time filtering™.
To understand this, we consider the various image frames available as samples of a 3-D function
flx,y.1). The sampling intervals &x and Ay denote the spatial sampling according to the detector

size. This 3-D function can be modeled as
Sy t) = s(x,p. 1)+ CN(x,y, 1)+ UCN(x. 3. 1) (3.16)
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Figure 3-1: Single difference and double difference images of
an image sequence
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phase space is mapped into a spectral domain seems 1o be a feasible extension of the concepts to
provide representation of color features. Initially, application of the SG-MRI operator with contrasting

color coordinates for the component Gaussians will be examined.

N

The SG-MRI operator also has a direct extension to the detection of temporal s 't of structural
teatures. By associating Gaussian components with different time frames, magnitude and orientation
of time shifts between frames can be obtained. Initially, we prepose to develop these concepts in a
space -time frequency domain framework and study the tuning of operators to various 1ypes‘ of feature

shilts.

The operators and extensions described above are all well-suited to optical implementation, but for
our studies this functionality will be simulated using the RAPIDbus !l architecture. This
implementation provides the basis to examine the use of these operators in a system where

interactive search and adaptiveé tuning of the masks is a significant property of the algorithms.

The recursive model matching strategy described in the section 3.6 requires interactive tuning of
correlation masks. The masks used in those studies will be derived from the set described here and
their extensions. A great many possible composite MRI operators could be defined based on the

primary set, and these could piay a uséful role in the recursive strategy.

Figures 4-5-4-8 show the effects of changing one parameter at a time on the mask shapés of the
MRI operatars of the real and imaginary planes and their corresponding magnitude and phase planes.

Fig. 4.5 demonstrates the effect of changing the size of the mask. It is important that the mask size
chosen be large enough so that the values at the edges of the mask are near zero. Failure to do this
will mean that the mask is not symmetric and the property of rotational invariance will no longer be
valid. As can be seen, changing the size of the mask does nothing to the generated kernel itself; it
only affects the extent of the kernel that will be included in the mask.

Fig. 4-6 shows the effect of varying the order of the masks created while keeping the remaining
parameters the same. The value of n is equal to half the number of zero-crossings encountered in

either the real or the imaginary planes as a contour at a fixed radius R > 0 is followed for 2# radians. n
= 0is a low-pass filter, n = 1 is an edge detector, n = 2 is a line detector, n = 3,4,5,... are higher
order ripple detectors. Note that the radius of the maximum magnitude of the mask pair increases

finearly as n increases. This holds true only when ¢k is a constant.

Figs. 4.7 & 4-8 show the effects of varying o and k respectively. These two parameters always
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Based on this definition the MRD of order O is just DOLP transform. The MRD terms of higher order
also provide a reversible decompaosition of the gradient image of order n. That is, the MRD transform
of order n of an image is sufficient to reconstruct the nth order gradient of the same image, but nat

necessarily the original image itself.

The MR! operators provide a basis for muitiresolution decomposition of an image. The resulting
multiresolution représeniation may then be interpreted as the response of a set of orthogona! feature
detectors and searched for significant response regions which will characterize the structure in the
image. Unlike peak-s in the DOLP transform space which do not carry orientatiop information,
magnitudé peaks in the MRI space may be associated with the angle response to provide important
structural ciues. In the proposed research program we will implement and evaluate the.MRl operators
as tools for the representation and detection of structural features in aerial images :)f airpérts and
harbors. -

The interpretation of the MR! operators in the Fourier spectrum may be related to the performanée
of the texture energy measures reviewed above. The texture energy measures provide statistical
information about the sampled local two-dimensional spectrum of the image at some resolution level.
Statistical summary information from the MRI operator space includes distribution estimates of
orientation from multiple cperators as well as magnitude information. In the proposed research we
will implement and evaluate the MRI operators as tools for the description and segmentation of
textured regions in aerial images of airports and harbors.

A number of extensions to the MRI operators and MRD transform have been investigated. The
shifted- Gaussian MRI operator seems to provide significant computational advantages for digital
implementation although it is an approximation to the rotational invariance property of the MRl itself.

The aerial imagery being examined is often obtained in a multispectral format. and spectral contrast
is often a useful clue to structural and textural features. Exlensions of the MRI operators in which the
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We have introduced the MRI! (multiresolution rotation invariant) operator and the MRD
(multiresolution difference) transform in order to derive a more efficient representation of complex

structure as well as texture. The MRI operator of order n and resolution k is defined by:

=(n) (n)

hy (r,0) = hy (r) &3¢, ¢H)
n -2 2

h(:) (r) = Zw:oz e T2 (2)

where (r,q) are polar coordinates of the operator space. The MR! operalor is rotation invariant in
the sense that the magnitude of the response is independent of the orientation of a directional
componert of the input image. ” '

The significance of the MRI operators may be seen by examining their projection p(x) along any
single radial axis. These operators of order n have the following interpretation:

e n = 0; Point Detector

e n = 1: Edge Detector

e n = 2; Line Detector

e n>2: Higher order ripple detectors

Each of the complex operators defined in this manner will have magnitude of response related to

the magnitude of that feature, and angle of the response related to the orientation of that feature. In
addition, the detector masks for different orders are orthogonal, and therefore energy is distributed
independently among the features. The Fourier spectra of these MRI operators show that n=0

corresponds to a low-pass filter, while operators of increasingly higher order n correspond to band-
pass filters of decreasing bandwidth.

The MRD transform i3 defined by:
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constructed out of dilference of Gaussian kernels. The most elficient implementation utilizes
properties of the Gaussian kernel function which permits resampling and cascaded convolution with
expansion and reduces the sequential computation of this transform from O(N..) multiplies and
additions to O(N).

The DOLP transform set itself is not a very efticient representation of the image since it requires
expanded storage space in a normal digital representation. However, it is possible to extract a
symboiic representation of important information from the DOLP transform ''sing peaks of the
transiorm arrays as key structural elements of the image. In[Crowley ana .. derson 84], we
introduced two levels of symholic representation. The first level is composed of symbols derived
directly from the DOLP images based on local positive maxima or negative minima in one, two, or
three dimensions of the DOLP space representation. The second level of symbols utilize the
connectivity among peaks and ridges to form pezx paths and ridge paths. These symbol structures
are defined in detail in [Crowléy and Sanderson 84},

The advantage of the multiresolution representation techniques is the ability to describe both high
resolution and low resolution structural image features in the same representation. The
disadvantages of the bandpass filter approach are the difficulty in describing complex shapes,
partiCUIarly"those involving oriented coinponenis and the current demands of the computation to
compute such extensive filtering operations. In order to enrich the capabilities of the multiple
resolution transform, we have intrcduced a set of basis ‘unctions at each resolution level which
includes oriented two-dimensional basis functions. This set of structural basis functions provides a
much more complete description: of the image at each level, at the expense of redundant information
and increased computational load. In the context of this project we propose to explore the
implementation of such techniques using parallel and optical processors. In this context the basis
function tree provides a richer source of information for matching and interpretation which may be

searched interactiveiy rather than exhaustiveiy computed.

Multiresolution representations provide a basis for searching an image database with respect to size
independent features. Cur experience with the DOLP transform described in section 4.2.4 has
suggested that configurations of DOLP peaks are in fact good descriptors of image structures, but
that as the resciution is increased such configurations become exceedingly complex. In addition,
lighting conditiuns, shadows, and bachyround vanations may cause significant distortions of the
DOLP representation which are difficult to interpret due to the lack of more specific orientation and
structure information 1n the DOLP transform itself. The transtorm itself accentuates symmetrical
contrasting reqions and s useful for localing regions of interest, but may not be very efficient in

descnbing complex structures.
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As a second example, we have used probabilistic graph models for matching of multiresoiution tree
structures derived from gray-level images. The derivation of such a multiresolution tree using the
difference of low-pass transtorm is described in the next section. In this case. the matching algorithm
is formulated as a hierarchical tree search using likelihoods to guide correspondence matching at

each level of the trce. Results of this approach are described in [Crowley and Sanderson 84].

Probabilistic graph models provide a general approach to many practical matching _and recognition
problems where a training set of images of 5 priori knowledge of the probability structure is assumed.
in this way, object model-based information may be incorporated using a priori probability structures.
Many previous approaches to matching and pose estimation may be considered subsets of the

'probabilistic matching approach in which edge or region attributes of images are related by heuristic
similérity measures rather than likelihoods.

4.4 MRI Operators for Shape Representation

Description of gray-scale shape in images is complex because shapes are often defined by some
combination of regioo inforfnation and edge information. From the point of view of image processing,
region information is often contained in the lower spatial frequency components of the image, While
edge information is contained in the higher spatial frequency compo_nenfs. A complete description is
difficult to achieve therefore from extraction of structural elements at one resolution level. A number
of techniques havq been proposed which transform the two-dimensional gray-ievel image to a three.
space representation in (x,y,K) space, where k is the parameter of the resolution space. Such a
representation has the advantage that peak structures in the (x,y,k) space shift uniformly along the k
axis under scale transformations, and therefore objects of different size may be recognized in a
representation with the same structural relationships. In this section we describe an extension of the
multiple resolution tree which incorporates structural basis functions at each level in order to provide
a more complete description at each level and include orientation specific structural components at
each resolution level.

Our preliminary work on representation and probabilistic matching of muitiple resolution structures
has been carried out using a reversible transform called the "difference of low-pass” or DOLP
transform developed by Crowley [Crowley 81, Crowley and Stern 84, Crowley and Parker 84]. The
DOLP transform expands a single gray-level image f(x,y) into a set of bandpass images b(x,y k), where
k is the index of the multiple resolution tree. Each bandpass image is obtained by convolution of the
original image with an appropriate bandpass impulse response function h(x,yk). In the
implementation of this transform by Crowley [Crowley 81], the bandpass impulse responses are

.
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Figure 4-4: Tracking movement of an object using successive likelihood matches
with a probabilistic graph model.
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Figure 4.3: Matching graphs between a model and distorted observations with
associated likelihoods.

LogLikelihood = 35.2

Loglikelihood =« 79.8
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Figure 4-2: Probabilistic graph derived from an ensemble of gray-level images.
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functions over the observed outcomes from the class of graphs and the attribute set A. The likelihood
of an observed outcome may be used as a basis for the matching and recognition of patterns in the
image. In this application the structural elements of the image are associated with vertex and edge
symbols of the model. and both structural relations and quantitative properties of the elements are
retained in the model. Image components such as vertices. edges, regions, or intensity peaks may be
used as structural elements, In the resulting probabilistic model, each element has some outcome

probability, some observation probability, and some probability density of attribute values.

A simple example of a graph representation derived from a gray level image of a polyhedron is
shown in figure 4-2. A line drawing of the original image is shown in figure 4-2a. The graph structure
extracted frcm a single observation is shown in figure 4-2b where graph vertices have been attached
to structural corner elements of the original image and graph edges have been attached to edge
elements of the original image. An ensemble of observations such as that in figure 4-2b is used to
derive a probabilistic graph model such as that shown in figure 4-2¢. In figure 4-2¢, the probability
distribution of positions of the vertices vare indicated by circles. The probability distribution of vertex
angle attributes is indicated by p(8).

Probabilistic graph matching may be used for matching of images and recognitior; of objects in
images using likelihood criteria as a basis for search correspondence trees. The likelihood of any
observed graph, subgraph, or structural element may be computed and used for estimation or
decision making. Such problems incorporate three phases: (1) correspondence matching of graph
elements, (2) rigid graph pose estimation, and (3) likelihood calculation. The probabilistic graph
model uses pose independent likelihoods to hypothesize correspondence, then estimate pose. The
use of attributes to guide correspondence matching, and the use of observation probabilities to
structure the search resulits in simplified and reliable aigorithms. ‘

We have applied the probabilistic graph matching approach to two types of image representation,
Graphs which are derived from edge, corner, and junction components of gray level images are
useful for description and matching of objects. In this case, attributes include lengths, angles, and
positions of elements. The resulting graph models have been used to classify objects, inspect
abjects, and determine orientation of objects in scenes where edge information is a reliable clue. An
example of matching likelihoods between a model graph and various distorted observation graphs
including partial views is shown in figure 4-3. The likelihood is a measure of the correspondence
hetween the two structures in each case. A similar approach may be used to track movement of the
model object by matching successive views and computing the pose changes between views. Such
=) -_j an exampile is shown in figure 4-4 for the same object used in the previous examples.

3 O U o PRI
!-1'.;.:.;)’.3 PR R I T AR L S A A A

L O . S ST O
.I' . '. . - . - - - . - . . . .
LW IR S WS WS- WO AR P VIR W 1 O S P o W i S o

BT
- VORI R W




42

object support node simplifies the design of large, highly parallel software systems through the

encapsulation of objects at the memory rather than through the processor instruction stream.

4.3 Probabilistic Graph Matching *

In a variety of image processing problems, the data contains stereotyped subpatterns which are
well-described by symbolic representations. Such symbolic representations include graph, grammar,
and automata models. While these models are very useful when subpatterns are highly invariant to
image variability, symbolic search and manipulation techniques become very complex when symbol
correspcndence becomes uncertain. Symbolic representations may be enhanced in two respects
which incraase their applicability to real data. First, stochastic structures may'be used to associate
outcome probabilities with structural relations of the model. Second, attributed structures offer a rich
class of models where spbpatterns or symbols have associated features or attribute values. Such
attributed structural models pose many difficult methodological issues for implementation. in this
study we have addressed problems of the dichotomy between symbolic and statistical information
and its effect on the choice of symbol primitives, issues of structural observability, structural
matching, assumptions of component independence, and identification of structural transformations.
These issues will be discussed in papers and reports now in preparation.

~
~

An attributed random graph model consusts of a4-tupleR = (V a,E,B) where:

1. the random vertex set V = { V,i = 1,...,n}, where each V is a random variable called the
random vertex.

2. the random edge set E = { E,i=1,...,n, j=1,.n}in V XV where each E is a random
variable called the random edge.

3. the random vertex attribute set a = {ai. i = 1,..,n} where each a is a random variable
with possible outcomes {a}.

4. the random edge attribute set B = {B,,i = 1,.,n,j = 1,..,n} where each 3 is a random
variable with possible outcomes {b}.

5. Each outcome of R = (V,a,E,f) is an attributed graph H = (v,a,e,b) with probability P(H)
= Prob {V=v,a=a,E =e,8 =b} such that

e P(H) = Oforall H.e.T',

¢ Z.P(H) = 1, where [ is the range of R.
P(H) is the probability distribution of R.

The attributed random graph model defined above provides a basis for the definition of fikelihood
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being completed using our enhanced SCALD Il CAD system. Many components and subassemblies

have arrived and are waiting for integration and test. Over the coming few months we anticipate

8 testing to progress through a two, six, and finally twelve processor stage. Through the donation of a
(L
o PCB design system from I1BM, our CAD system is being enhanced to carry the design through muiti-
- layer PCB film.
.
VAX 780
XN “CMyY-R1-FAS®
FOR_SOF TWARF
: DFVET OPMENT ﬂb}»’ofﬁ; A
1P/TCP ON_10M DISK LNITS
B1T/SEC ETHERNEY T
" ETHERRET pISK
s - T §8000 SYSTFNS RUNNING lYOS Oﬂ‘llﬂlﬁ SYSTEN " CONTROL
a oS TVATOSYSTENS RUNNING UCD 4.1 UNIX , cowrrot
- 1 1
0 68000 £8000
Hitoon ||t || e || Mo || it | HETu || i || BT
A
:(’!I"T‘ %IV :0!? HEMORY :0!1’ MENORY 11 PORT MEMORY PORT MEMORY PORT NMEMORY PORT MEMORY PORT l!lOlY
3 . i | | | i i ]
- N B RAPIDBUS 11 160 MSYTE/SEC DATA INTERCNANGE
-t ANA - COLOR
”sggﬂF SKY ARRAY n BYTE SIGITIZER
. ARRAY PROCESSOR e & VIDED
PROCESSOR HENORY DISPLAY

i
Ty

oA

Figure 4-1: RapidBus Il prototype multiprocessor configuration.

-
s a a2

Software developn'ient is proceeding in parallel with hardware development using both a multiple
t: processor Versabus system, and a stand-alone RapidBus !l node (IBM CS-9000). The host
. development system is functional for C and assembly code. The target operating system is operating
- on a single node, and will soon be expanded to a dual-processor Versabus system. An outside group
.: is doing parallel development of a multiple-processor Franz-Lisp system in return for a duplicate
R RapidBus . :
~ Design concepts for an advanced machine are emerging from the RapidBus |l effort. Under the
\ system name RapidGraph, a new high speed interchange, multi-programmed processor, and object
:j support node have been developed. The interchange provides message passing at multi-gigabyte /
;‘-' sec rates using a small number of bipolar VLSI devices. The processor is designed to handle digital
» computation using an "object-flow" model to integrate both symbolic and numeric computation. The
-
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o 4. MODEL-BASED ALGORITHMS FOR HYBRID
i DIGITAL/OPTICAL PROCESSING

b 4.1 SUMMARY

The objective of this research effort is to develop algorithms for representation and interpretation of

3 space-based images which are well-suited to hybrid digital/optical implementation.

"2
:'j-.:f In the first phase of this program we have developed a multiresolution rotation- invariant (MRI)
b operator which may be used to extract structural features as well as charactcrize textures using
= statistical measures. Experiments in texture classification have shown that the MRI operator is a
j:?-j useful representation ot texture properties and provides classification independent of rotation and
scale. Probabilistic graph matching was used to demonstrate matching between attributed graph
:"::: representation of structural image elements. The operators we have described are well-suited for
S ontical implementation, and the matching of representations derived from these operators is suited
for implementation on a hybrid digital/optical system. Evaluation of these algorithms and their hybrid
."::-_. system implementagion will be carried out through simulation on the RAPIDbus Il system. Further
i re'ﬁnements of the high-speed RAPIDbus architecture would support a hybrid digital/ optical interface
o witen available. -
3% : -
§I These approaches may be integrated into a recognition framework based on recursive model
"::j matching in which composite MRI kernels are generated adaptively based on hypothesis formation in
) a model-based setting. Recursive model matching is intended to explore the capabilities of a highly
._:; interactive hybrid digital/optical system which utilizes digital hardware to generate hypotheses in a
:f:l'; knowledge- based environment and uses optical hardWare to explore and validate hypotheses using
‘ convolution-based adaptive feature extraction mechanisms.
- 4.2 RAPIDEUS ARCHITECTURE
| One important aspect of the integrated image analysis system sought by this project is the hardware
' and programming environment. Contemporary environments were not designed to couple a high
' bandwidth electro-optic processor with digital processors doing = ... ric and symbolic calculation.
:f';“_: The RapidBus |l prototype, being developed for this project, provides both a near-term exccution
environment, and a longer term opportunity to develop new architectural concepts oriented toward
" the needs of an integrated image analysis system.

The RapidBus Il prototype is currently in the assembly and testing stage. Design documentation is
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where s({.x.v.7) denotes the sub-pixel target,('N(x.), /) denotes the correlated noise and {/('N(x.yv.1)
denotes the uncorrelated noise. The goal of the space/time filtering is to process the sampled 3-D
\
N function to enhance the target s(.v. v, /) while suppressing the remaining terms in eq.(3.16).
;:f{ The target s(x.3.7) can be modeled as a thin straight line in the 3-D space with the dimensions of
e this line in x and y axis being sub-pixel in nature. The ('N(.x.).1) varies slowly in x and y and shows
'.j-': linear shift in t. On the other hand, the uncorrelated noise U('N{(x.}.1)is completely random and is
:j:jf 4 characterized by high frequencies. By observing the 3-D spectra of the three components in eq.(3.16),
‘\:::: we plan to derive an optimal space/time filtering scheme for the 3-D sequence j'(.\‘.-y. /). 'ssues to be
resclved in this connection are sampling effects, 'optimal’ filters, computation complexities and
.—j:. computationally efficient (sub-optimal) filters.
" 3.7 FUTURE WORK
{ Our year 3 effort will focus on better understanding of the general techniques presented here. In
a3y ' )
e addition to this, we will improve our image generation software to incorporate muiti-region image
generation. We will also explore the optical interpolation methods. Other advanced sub-pixel shift
X ;3'. estimators such as maximum-likelihood and maximum a posteriori will be considered.
)
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appear together in the equation above. Together, they form the term o’k which can be considered to
be the "variance" of the gaussian filter. Increasing either will make the spread of the gaussian larger.
The resolution parameter, k can be regarded as “line resolution" since increasing by a small amount
will change the spread of the gaussian far less than will the same change in o, the "coarse
resolution”. Therefore, in the two figures we see that there is very little difference in the plots in which

k was increased but we see a much larger difference in the plots in which ¢ was increased.

The following is an example of the results obtained by applying different masks to a sinqle image.

4.5 Texture Classification Using MRI Operators

Texture occurs in images due to either irregular surface topography or to nonuniform surface

reflectance. There have been a number of approaches to the modeling of texture in images [Haralick

70, Laws 79, Harwood et al 83]. Most of these rely on the modeling of local correlation properties of

the gray-level image using either direct statistical measures or using the response to specific masks.
In particular, [Laws 79) described a set of texture energy measures in terms of the response to linear
3 x 3 or 5 x 5 masks. These masks are chosen to refiect combinations of center-weighting, edge
detection, and spot detection templates. The distribution of the outputs of these masks averaged
across a toxtured region was shown to be useful for the discrimination of texture types. Harwood
[Harwood et al 83] extended this idea and studied the use of rank correlation statistics as a basis for
discrimination.

Texture models such as those described above summarize descriptions of the variations in image
intensity, but do not relate image properties to either surface topography or surface reflectance. An
alternative mode! of image texture has been proposed using fractal geometries to model image
texture and relate image texture to surface topography. Fractal geometry was introduced by
[Mandelbrot 77. Mundelbrot 82] to describe certain classes of irregular edges or surfaces including
coastlines and mountain profiles. More recently, [Pentland 83a, Pentland 83b] proposed the use of

the fractal dimension to characterize images of natural scenes and perform texture segmentation.

The fractal dimension D is the dimension of a measurement space cxpressed relative to the
topological dimension E. If the parameter H = D - E is used to characterize the roughness of the
observed texture, then H =0 corresponds to a fiat plane, while H =1 corresponds to an array of spikes
covering the plane. In terms of H, the cumulative distribution function of the fractal Brownian function
B(t) is:

Rn)=PA[B(1+ A0)= B(D)/1A4Kn),

-

et o
AR T .
T T RN
. Ny
> o

Tt -
~, .

-
..".'h
PSR

B T R W N T A Y Ty Vv w WL Y -(YmT;T“v‘."FYYTm*‘@‘

. I I A TE R VU AP SN S R N . L
[ad \.- et ',«"_- sy ‘1 A I R SRS W ‘\. L e ..'.
'A‘A;'.;_‘.-q - % N R i‘.!:-\‘.‘x. N R RS LIS T




S liat - i ies aue s ;v‘T

R G- BriA el e e e

L e o n-g

,o0 =3 k=1

Figure 4-5: Masks Generated By Varying the Parameter gize
n=2

i

ol

PR R

L)
e e "

AT
IR AS

-
Py -

e - o
X
Salia

Ly

2L

Sndnleg

LY
o

T

Lo

R
Co o v,
PP I

SR PR
R Y
DS AR

N el
A

...f- - - -
LBV IRISIY )

.-

et
ol

9
"z

1‘".

.~
o

P
[
¥ P

RV

TS



P N T N TP P Uy xf"')l-T

Figure 4-6: Masks Generated By Varying the Parameter n
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Figure 4-7: Masks Generated By Varying the Parameter o
size = 31x31,n = 2,k = 1
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Masks Generated By Varying the Parameter k
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where if H=1/2 and if F(n) is a zero-mean, unit variance Gaussian, the B(t) defines a classical
Brownian motion process. The fractal dimension in this sense is a compact parametric description of
a homogyeneous. isotropic random process which has advantages since it is invariant to scale.
Pentiand {Pentland 83a, Pentland 83b] related the image texture model to a natliral surface model
and showed that if the surface topology is fractal then the image intensity is also fractal if the surface
obeys Lambertian assumptions. This result for fractal models is suggestive of more poweriul resuits
which might be achieved by relating image texture to more general random models of surface
topography.

Studies of random surface topography suggest four principal contributions to.the resulting textured
image:

o Local edges of the surface elements
¢ Shading due to su}face gradient and reflectance
e Shadows due to disparities between light incidence and viewing angles

¢ Local edges of one surface element occluding another.

These mechanisms are associated with surface topography and not with reflectance changes due, for
example, 10 curface markings. The observed image texture varies in predictable ways with angle of
view and lighting directions, and we would like to identify image texture measures which pro{/ide
consistent measures of such changes. -

Work in this area has centered around the use of texture energy measures as described in [Laws
79]. Both real and simulated images have been used to demonstrate the efficacy of this technique in
distinguishing difterent 2-dimensional textures. Extension of this method to 3-dimensional texture
analysis is currently being studied. Such analysis will aid in understanding the relationship between
surface contours and image texture.

Simple one- and two-dimensionai masks form the basis for texture energy measures. The
distribution of the outputs of the different masks averaged over a textured region is useful in texture
discrimination. These masks are chosen to reflect combinations of level, edge, and spot templates.
The one-dimensional vector masks are weighted towards the center and all are either symmetric or
antisymmetric and all but one are zero-sum. Five length vectors are generated by convolving two
three-length vectors. One-dimensional vector masks can be run both horizontaily and vertically
across an image. The two-dimensional masks are formed by convolving a horizontal vector with a
vertical vector of the same length. Figure 4-9 shows a number of the magsks that are usaed in texture
energy measurements.
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Eight of the 3x3 masks and ail one-dimensional vector masks except for the 13 and 15 level vectors
are zero-sum. Convolved over a region with uniform pixel intensity (i.e.--no texture). a zero-sum mask
will produce an output that is identically zero. "Texture Energy” refers to non-zero values resulting
from convolutions with zero-sum masks. A Textured region is first histogram equalized to ensure that
every region starts with the same average intensity. The various masks are convolved over the region
separately, creating a number of "texture planes”, one for each mask. The average pixel intensity for
each resulting plane is then taken as a texture energy measure and collectively they form a feature

vector that can be used in textura classification.

Fourier analysis of the various kernels reveal that these texture energy masks serve as bandpass
filters in the frequency domain. Alone, the 3-length vector masks 13, s3 and e3 correspond to low-
pass, high-pass and band-pass filters respectively. The 5-length vector masks also operate as filters,
though each mask peaks in a narrower frequ_ency range. The two-dimensional masks work as
bandpass filters in the 2-d frequency plane. Each of the nine 3x3 masks is found to peak in a
predictable manner in each quadrant of this plane as shown in figure 4.-10. Each 5x5 and 7x7 mask
also has a unique peak in the 2-d frequency plane. The set of all masks of size NxM covers the entire

frequency plane.
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Figure 4-9: Texture Energy Masks
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::\ An image with a number of simulated textures (4-11) was generated and texture energy measures

were determined for each of those textures. The first row of textures is column.oriented. The first
:::3_ block alternates dark and light columns; the second block alternates two dark and two light columns;
'.:;:_ the third block alternates four dark and four light columns; and the fourth bidck of the first row
repeats the sequence of {...light,medium,dark, medium..) columns. The second row of textures is row

oriented. It is identical to the first row except that the textures have been rotated 90 degrees. The

first block of the third row has a checkerboard pattern. Each square of the checkerboard is one pixel

A

it
e,

.

in size. The second block of third row has alternating light and dark diagonal lines that are two pixels

4, ®
.

AR

wide. Initially. all texture patterns have the same average intensity. Random noise was introduced
into the imagye before processing. The texture measures for this simutated image are tabulated below
Ei in Table 4-1. Because the row- ahd column-oriented textures are obviously linear, 3- and 5-length
linear vector masks were used in addition to the 3x3 masks. The values obtained indicate that the
::;j different textures do indeed re_sult in unique texture energy measures and that these measures could
X be used to distinguish between textures. ' ‘

, The aerial image shown in figure 4-12 was used in applying texture energy masks to a real image.
- Four textured sections containing dirt, grass, and two different sections of water were taken from the
original image and each was histogram equalized. The 3x3 masks were then used to generate the
textural planes and from them the texture energy measures were obtained. Two of the sections were
- images of water, one section was a grassy field and the other an uneven area of dirt & Qegeta;ion.
The results of. this texture analysis are tabulated in Table 4-2. The two sections of water had, as
expected, very similar energy measures. The measures for the section with the grassy field and the
section with the dirt both differ significantly from the water-containing sections but differ from each
other (by > 10) only in the e3e3, e3I3, and s3!13 masks. However, using just these three masks, they

A RPRPR R

can be separated.

e

- Resuits here show that texture energy measures can be applied to aeriai images which have sizable
. textured regions. Information gained from macroscopic texture analysis can aid in understanding
N changes in land usage and local scene analysis.

The primary objective of texture classification is to identify textured regions within the image. ifitis
S known where the texture boundaries are, classification of the different regions can be done with
\ relative ease. in such a segmented imnage, the task is one of delermining a number of texture
P measures for the large areas and then classifying those areas into one of severai known classes.
However, when no a priori information is known about the texture boundaries, the task becomes
harder. Texture measures must be calculated for each pixel and the pixels then classified. The
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Figure 4-10: Fourier Domain of Texture Energy Masks
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Figure 4-11:
mask | (1,1) (1,2) (1,3} (1.,4) (2.,1) (’2 2) (2,3) (2,4) (3 1) (3,2)

Simulated Texture Image

orig. | 128 128 128 128 128 128 128 128 _ 128 128
eled | ] 7 6 6 7 9 7 ? 7 126
eld13 | 16 - 16 17 17 21 127 73 71 17 125
edsd | 9 8 8 8 10 11 9 8 10 126
13e3 | 10 126 68 686 11 13 12 12 11 126
13s3 | 126 126 70 69 16 17 16 15 16 127
s313 | 30 30 3o 29 126 127 79 78 31 126
s3s3 | 15 15 14 14 17 17 15 15 126 126
sdcol | 9 9 9 9 127 95 53 52 127 96
sdrow | 1217 96 50 51 6 6 6 6 126 96
sbcol | 9 10 10 9 10 127 96 69 11 127
sSrow | 9 127 94 67 8 9 9 8 8 127
elcol | 5 5 5 5 6 96 50 50 5 94
e3row | 4 96 50 49 5 5 5 5 4 95
eScol | 12 1 11 12 14 128 112 68 1 125
eSrow | 12 127 111 67 13 14 14 13 13 125
r5col | 32 31 31 31 127 126 108 77 127 126
rSrow | 125 127 111 72 19 20 20 19 125 127
wScol | 13 12 12 12 13 126 95 69 13 . 126
wSrow | 6§ 127 96 65 8 9 9 8 8 126 |

Table 4.1: Texture Measures for the Simulated Image

chailenge here is to develop an algorithm that will accuratcly classify pixels without incurring a great
computational cost. This invoives finding the smallest possible feature vector that will offer
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Figure 4-12: Aerial Image used for Analysis with Texture Energy Masks

mask | dirt field waterl water2
orig. | 128 130 128 128
eleld | 23 43 84 84
e31ld | 90 118 184 187
e3s3 | 33 43 84 84
13e3 | 102 102 141 135
1313 | 123 129 125 123
13s3 | 102 102 141 135
sJed | 33 43 84 84
313 | 90 1:i8 184 187
s3s3 | 33 43 84 84

Table 4-2: Texture Energy Measures for Real Images

reasonably good inter-class separation. As described below, the MR! operator was found to be very.
effective in classifying textures pixel by pixel.
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Training

The [Brodatz 68] texture album contains photographs of many textures. Four stucturally similar
“ceflular™ textures, aluminum wire. cotton canvas, raffia and oriental straw cloth were chosen for this
work. These textures were chosen because of their similarity in cell size and cell shape. They may be
considered to form a "worst case” set in the sense that they are very similar to each other and
therefore may be hard to tell apart.

Fig 4-13 shows the composite image that was used as the training image. 128x128 samples each of
the four textures were used for this purpose. Each sample was individually hisxoéram equalized to
eliminate first order differences. This ensures that differences in brightness between samples after
processing with the MRI operator are caused by the convolution operation and are not due .to
differences in the initial brightnesses of the samples. Training involved the use of 28 different MRI

operators and each time the following process was carried out:

1. convolution of the composite image with the operator in the frequency domain and
conversion of the result back into a compiex image in the spatial domain.

2. conversion of the complex image into a normalized 8-bit integer image giving the gray-
level magnitu@le for each pixel.

3. an 11x11 average smoothing of the 8-bit integer image

4. calculating average gray-level intensity and standard deviation measures for 100x100
internal regions of each of the four samples. The internal regions were used rather than
the whole 128x128 section to avoid including edge pixels in the average and standard
deviation measures.

The results of performing this set of steps with each operator is summarized in Table 4-3.

This was followed by determining which masks gave the greatest between-class separations. To do
thig, the "inter-class ratio" was determined for each pair of classes for every mask. Briefly stated, the
inter-class ratio is the difference in averages between two classes divided by the sum of their
standard deviations at a particular mask. For mask m and any two classes i and j, the inter-class ratio
RZ is defined as:

" = [ Avg(m.0) = Avg(my)]
N7 [Stdm.i)+ Sidm))

The inter-class ratios calculated from the entries in Table 4-3 are given in Table 4-4,
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MRI MASK

n0sif.m
n0s2f.m
n0s3f.m
nQOs4f.m
n0s5f.m
n0s6f.m
n0s7f.m
nislf.m
nls2f.m
n1s3f.m
nis4f.m

ni1s5f.m

nis6f.m
ni1s?f.
n2sif.
n2s2f.
n2s3f.
n2s4f.
n2ss5f.
n2s6f.
n2s’7f.
n3sif.
n3s2f.
n3s3f.
n3s4f.
n3s5f.
n3s6f.
n3s7f.

3 3333333333353 33

straw cloth
avg std

50.
40.
33.
33.
33.

0
[é,]
\nmumumomom\awouuoam.—-—-mooa»mﬂm

Nh‘QO"NQUOO’DCD(DUMO)mNHO@br—aO'AUNNmU\N

N DA WWNDBDBOIDEBLWTNNORAIDNDSE BN

raffia

NDABNONRNRLON®OEH O OOE®R-OLEAIN &ON®

17.
21.
25.
30.
31.
32.
31.

9.
11.
18.
25.
27.
27.
27.

7.
10.
11,
19.
25.
27.
29.

6.
10.
11,
13.
20.
24,
26.

AN N O R ONWONNTOWRRLWHAWWONSD &o

cotton can

PO RNNONOONWNDA HBHLOTUTODODNDWbLOUVEOWO

BND IO = ONNOD

std

12.
23.
30.
39.
46.
51.
53.

12.
16.
21.

AN ODWOOODNODBONOTNDWOBNATENOLDEON

alu wire

avg std
90.2 14,
64.8 16.
58.9 27

71.7 39,
83.8 46.
94.1 52,
g6.9 54.
81.7 10,
76.8 9.
59.4 8

35.1 7

24 .7 g.
28.8 12,
36.7 15,
67.0 9.
77.4 10.
71.4 8.
53.6 7.
27.2 5.
16.4 5.
16.2 8.
57.5 8.
73.6 11.
73.3 9.
68.2 - 9.
38,5 6.
19.1 4,
15.7 6.

Table 4-3: average & std dev for each class for each MRI operator
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The dynamic poo! of hypothesis evaluation processes are built upon specific models pulled from a
hierarchical object and texture data base. Valid scheduling requests inside the pool include
activation of processes for the same model at different locations within the image (high level),
spawning of subprocesses investigating specific possibilities down the object model hierarchy (lower
level), or termination of hypotheses which cannot be supported relative to competing hypotheses for
the same structure. All communication between processes investigating hypotheses occurs through

the image frame descriptor processes or the process scheduler.

Questions which arise in the course of trying to support or deny a hypothesis are collected,
condensed, and format prior 10 triggering feature evaluation. Requests from nuimerous evaluation
'processes must be condensed into a serial stream of feature requests such that the expectation value
for feature evaluation is. perhaps suboptimally, minimized. The proper feature operator and

parameters must then be prepared prior to the queuing of an evaluation request.

Two important functions are intentionally not shown in the diagrams. Data base information must
somehow be acquired by the system, either through structured learning or direct data entry. Image
analysis reports mugt be generated to provide system output based on the image frame descriptors.
The reporting system may include filters to forward very limited kinds of data. Central research issues
tied to recursive matching can be explored without these functions, directing limited manpower

resources to tasks where basic research issues can be addressed.

4.7.1.2 An Example

The recursive matching structure can be illustrated by a simpie example describing the detection
and identification of a parked aircraft, as illustrated in figure 4-22 through 4-25. Initial feature
extractors, such as low frequency MRI operators will help to locale candidate regions of interest.
Numerous high level object hypotheses may arise from these operators. Although this example
describes a structural analysis, similar operations might be used to describe a texture region.

Shown in figure 4-22, high level analysis, perhaps corresponding to MRi levels k = 9, and k = 10
respectively identify three candidate regions that might describe an aircraft, truck, building or other
object. Each high level hypothesas will in turn activate a process built arcund the appropriate high
level object model. Object model evaluation by #ach nracess will result in numerous questions which
help to support or deny the hypothesis. Reguests vy cne evaluation process can be.expected to
provide clues to other hypothesis evaluation procasses since each kernel function is run on the entire
image.
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INCOMING CAME RA IMCOMING
IMAGE PARAME TE RS 1MAGE
Y N
TUNED 2-D \ . 7 | TEXTURE TUNED 2-D
FEATURE 7 52g2§12$32§ N | BASED FEATURE
EXTRACTORS SEGMENTATION EXTRACTORS
I\ /N N\
\V
_ 1
FEATURE COOPERAT IVE COOPERAT IVE [ EATURE
REQUEST 7/ | STRUCTURAL TEXTURAL REQUEST
COLLECTOR HYPOTHESIS HYPOTHE SIS COLLECTOR
AND FORMATTER EVALUAT ION EVALUAT TON ANG FORMATTLR
' N /N
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HIERARCHICAL LSSEERE
OBJECT MODEL e
DATA BASE DALe

Figure 4-21: Recursive image analysis system using texture and structure.

The proposed iterative structure is shown in figure 4-21 such that structure and texture analysis are
unfolded into separate iterative loops sharing the same image frame descriptors (center of diagram).
In‘an actual implementation, these might be folded together into common hardware and software

mechanisms.

In the laboratory, incoming images are received aiready sampled in space (x,y), spectral frequency
(A), and time (t). Additiona( camera parameters describing camera altitude, angle, cloud cover,

latitude, and longitude are supplied to the internal image frame descriptors.

The proposed electro-optic feature extractors, simulated in the laboratory by array processors,
provide the only access the system has to image pixels. Early boot processes are used to initiate
extraction of simple edge and region information in order o initiate the formation of image
hypotheses. Texture analysis has an additional segmentation step in which the extracted texture

features are clustered into proposed regions, again iteratively.

Both structural and textural information is summarized within image frame descriptors. These
active processes maintain internal feature representations in order to service questions from
cooperative hypcthesis evaluation processes which may be indexed by one of numerous regional or

feature space keys.
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e Boundaries not readily evident as a change in brightness are often visible as a change in
the reflected spectrum. Adding an additional dimension, spectral frequency, often
sampled by discrete channels such as R(x,y), G(x,Y). and B(x.y), can provide information
on the magnitude and direction of spectral "edges” or "regions". As models generate
increasingly detailed questions about the image, reporting criteria can be narrowed to
inquiry about shifts from a specific spectral reference, or in specific image regions,

e Temporal changes between frames, or motion features, can be extracted using a variety
of techniques. We are interested in exploring the extension of gaussian operators to the
temparal dimension in analogy to spectral and temporal operators. Temporal information
assists in both object/background separation and object identification.

¢ Macro-operators, suggested by detailed object models. may combine several of the

" above possibilities. Questions about the angle at'which a wing meets the aircraft body
may be resoived by an operator tuned to a particular angle described in terms of the
‘spectral/textural properties of the aircraft and background. As very narrow hypotheses
are formed, features searches may be required which could not practically be anticipated
a priori.

The computational expense of many interesting operators, and thé number of possible parameter
combinations suggests a feature extraction task ideally suited to an electro-optic processor. Yet even
assuming for a moment that each feature possibility could be extracted instantaneously, any digital
representation of the complete feature space would (esult'in tremendous orgahizational and storage

 difficulties in an effort to make the features available in usabie form. When the number of possible
operators, combinations of parameters, and substantial kernel sizes are taken into account, the scan-
in/scan-out limitations of foreseeable devices makes a priori computation of all potentially interesting
features unappealing. Recursive evaluation of the feature space provides an aiternative to a priori
pruning of the feature space.

4.7.1.1 Recursive, Goai Driven Image Exploration

Recursive, goal driven image expioration allows a developing description of the visual environment,
described in terms of an object and texture data base, to select the particular regions of the feature
space which are evaluated in an interactive fashion. Depending on the diversity of objects in the
image, and the amount of prior knowledge coming from other frames, several hundred cycies may be
reguired to converge on an adequate frame analysis. Each cycle consists of a feature extraction
operation pipelined into a digital analysis by a multitude of processes, each investigating a particular
hypothesis somewhere in the image.

1Object motion might lend support to the hypothesis that a muving object was a vehicle in preference to a building. The
velocity, taken in context, provides further descriptive characterization of the object.
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4.7 Recursive Model Matching Algorithms

Recursive model matching allows a broad range of feature extractors to be interactively applied to
an incoming image under guidance from a library of hierarchicatly structured mod::-!s. At each step in
the recursive analysis of a frame, an ensemble of hypotheses are aclive suggesting objects and
textures present in the image. Evaluation of each model based hypothesis will suggest additional,
specific features which might be extracted from the image in order to lend support or disprove the
hypothesis. As additional features which support a particular hypothesis become known to the
evaluation process, more narrowly defined madels may be invoked as new hypotheses. Ultimately
each high level hypothesis must be resolved down to either highly probable terminal models or
determinations of an unfounded hypothesis.

The strengths of both electro-optic and digital multiprocessor technology are symbiotically paired
by the recursive model matching structure. Processors such as a real-time, optical correlator
[Casasent 78] allow a reference kernel function to be applied in paraliel to an entire gArey' level image,
limited only by the rate at which data can be digitally scanned in and out of the device. Decision
intensive steps, in w_hich the detected features are evaluated in the context of specific object models,
map well onto a dig—ital multiple instruction stream, multiple data stream processor. Associated work
in computer architecture (RAPIDBUS & RAPIDGRAPH) is providing a basis for the simulation and
implementation, respectively, of such a tightly coupled system, ’

4.7.1 Feature Space

Evaluation of actual high altitude or space based imagery, such as that shown in figure 4-20,
underscores the wealth of different kinds of features which need to be identified and cataloged in
order to match e;cisting model data. Througn the integration of data from diverse features, ambiguity
caused by lighting, partial object occlusion, and sampling noise can frequently be resolved. Several
different classes of feature extractors have been identified as being potentially useful:

o The multiresolution, rotationally invariant operator, described earlier in this report, assists
in the detection of points, edges, and lines within a single brightness or spectral plane.
Evaluation of an image by the MRI operator yields a list of candidate features described
by an x,y location and magnitude for n = O at each of k resolution levels. For higher
order operators (n = 1, n = 2), a direction is assigned to each feature point.

o Texture energy measures provide an useful means of identitying, characterizing, and
segmenting "background” regions. A set of N kernel functions are used as a basis set,
characterizing a sample texture in the N dimensional feature space by the "nearest"”
reference texture point. Boundaries of a particular texture region can be detected
through gradients in the texture energy measure assigned to local windows.
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Figure 4-19: Result of applying the MR region detecting
operator [N = 2] with a standard deviation
of six pixels. [A]is the original image,
[B] is the magnitude of the transform, and
[C] the transform phase.
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Figure 4-18: Result of applying the MRI region detecting
operator [N = 2] with a standard deviation
of three pixels. [A] is the original image,
[B] is the magnitude of the transform, and
[C] the transform phase.
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Figure 4-17: Result of applying the MR! edge detecting
operator [N = 1] with a standard deviation
of six pixels. [A] is the original image,
[B] is the magnitude of the transform, and
[C] the transform phase.
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Figure 4-16: Result of applying the MRI edge detecting
operator [N = 1] with a standard deviation
of two pixels. [A] is the original image,
(B] is the magnitude of the transform, and
[C] the transform phase.
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4.6 Structural Analysis Using MRl Operators

The MRI operator is also useful for the early processing of structural images.' Both the order and
standard deviation of the operator can be tuned to different image features. A single correlation
between image and complex MRI kernel determines both the strength of the feature and it's
orientation (for higher than zero order operators). The following four figures illustrate different
kernels applied to the same input image of an aircraft on a runway. Notice for the first order
operators, a standard deviation of six eftectively traces most of the aircraft outline. Once the aircraft
is located. operators with a lower standard deviation help to locate features such as the engines.
Region operators, with a second order kernel, help to locate the center line of the airframe and engine
cowlings reznectively.
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Figure 4.15: Segmentation of Above Image
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Figure 4-13: Texture samples used for training
top left: straw cloth, top right: raffia
bot left: cotton canvas, bot right: aluminum wire
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- Classification Results

: . A second composite image similar to the first was created. Different portions of the same

‘ photographs used in the training image were used to make this second image. Each of the three

I:i masks was convolved with the composite image, creating three feature planes. The gray-level values

! ::: provided by these planes at each pixel served as a feature vector of length three which was then used
to classify that pixel. A minimum distance classifier, using the averages found for each class and for

) é each mask from the training image, was employed to perform the classification. Results show that 95

,:f % of pixais in the interior regions of the different sections can be classified accurately whiie in the

N

'-:7 entire composite image 88 % of the pixels are correctly classified. Fig. 4-14 shows the composite

) image used for clagsification and 4-15 shows the resulting pixel-by-pixel segmentation.

: Tables 4-5 & 4-6 give a detailed evaluation of how the classifier worked including numbers and
percentages of correctly classified and mis-classified pixels in both internal regions and in the
. composite image.

\:‘

- Classified - Belonging to Class

.- As -

straw cloth raffia cot canvas alu. wire

- straw cloth 9429( 94.3) 138( 1.4) 237( 2.4) 0( 0.0)
; raffia 1( 0.0) 8902( 89.0) 0( 0.0) _ 0 0.0)
- cot canvas 434( 4.4) 0( 0.0) 9763( 97.6) o( 0.0)
. alu. wire 126( 1.3) 960( 9.86) 0( 0.0) 10000(100.0)
N Table 4-5: Classification Accuracy of 100 x 100 Interior regions

::. Overall accuracy 95 %

3

e Classified Belonging to Class

o As

Ve straw cloth raffia cot canvas alu. wire

] e bttt bbbt i et et bttty
straw cloth 14570( 88.9) 208( 1.3) 2444( 14.9) 789( 4.8)
- raffia 464( 2.8) 14203( 86.7) 6( 0.0) 1267( 7.7)
cot canvas 1130( 6.9) 0o( 0.0) 13931( 85.0) 0( 0.0)
alu. wire 220( 1.3) 1973( 12.0) 3( 0.0) 14328( 87.5)
4

Table 4-6: Classification Accuracy of Entire Composite Image
- Qverall accuracy 87%
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o MASK CLASS PAIR
ﬂ;._ cloth cloth cloth raffia raffia cotcan
R raffia cotcan aluwir cotcan  aluwir aluwir
S JTTTTTTT
'.-_‘:ii n0s1f.m 0.766 0.119 0.439 0.715 0.302 0.443
: n0s2f.m 1.050 0.370 0.906 0.464 0.251 0.290
- n0s3f.m 0.657 0.545 0.587 0.036 0.036 0.002
:':{' n0s4f.m 0.453 0.599 0.555 0.188 0.148 0.035
_.':: : nUss5f.m 0.336 0.623 0.583 0.325 0.290 0.028.
(S nds6f.m 0.242 0.638 0.608 0.424 0.398 0.017
l{{. n0s7f.m 0.166 0.647 0.628 0.497 0.481 0.006
v1sif.m 1.269 0.462 1.223 0.853 0.034 0.835
nisz2f.m 1.771 1.189 1.184 2.278 0.529 1.823
P nls3f.m 1.964 0.906 1.598 2.090 0.894 1.888
nis4f.m 1.358 0.154 0.188 1.211 1.230 0.272
o nisS5f.m 1.105 0.191 0.288 0.767 1.170 0.359
e nls6f.m 1.000 0.459 0.039 0.461 0.879 0.380
-Z:';f nis7f.m 0.910° 0.664 0.363 0.196 0.589 0.359
e n2slf.m *2.797 0.167 1.850 2.288 0.511 1.509
,x n2s2f.m 0.033 0.984 0.299 0.667 0.200 0.429
=P n2s3f.m 2.545 *1.786 *2.225 *3.080 0.492 *2.908
:-,\_'- n2s4f.m 1.946 1.000 1,341 2.220 1.119 1.928
- n2sSf.m 1.463 0.581 0.459 1.676 1.719 0.227
o~ n2s6f.m 1.7249 0.389 1.091 . 1.410 1.821 0.570
i n2s7f.m 1.143 0.119 0.724 1.156 1.545 0.532
. n3sif.m’ 2.767 0.427 1.098 . 2.614 .0.940 1.231
e n3s2f.m 1.652 1.333 1.630 0.587 0.075 0.637
n3saf.m 2.099 1.773 1.662 2.806 0.435 2,503
.j--f_’ n3s4f.m 2.727 1.431 2.124 2.990 0.852 2.590
n3s5f.m 1.917 0.822 0.491 2.148 1.637 1.180
- n3s6f.m 1.464 0.805 1.368 1.751 *2.045 0.325
) n3s7f.m 1.246 0.656 1.343 1.494 1.835 0.524
o
.:ﬁ: Table 4-4: Inter-class Ratios. Those marked with a'*’ are the maximum for
:}.-j that pair of classes
’ For classification, it is important to use masks that give the greatest inter-class separation. It is also
] \ important to limit the number of masks used in the interest of minimizing the amount of computation
‘j::;:: required. Therefore, for classification purposes, it is best to choose that minimum set of MRI masks
":::: that will give us maximum separation between any pair of classes. From Table 4-4 it is evident that
“ AR one of the masks: n2s1, n2s3 or n3s6 will give the maximum inter-ciass separation between any pair
- ¥ of the four textures. Therefore, only these three masks need to be used for classification of textures
~
- known to belong to this set of four.
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% g HYPOTHESES: AIRCRAFT,
- TRUCK, BUIDLING. ETC.

o Figure 4-22: Initial region operators locate a structure suggesting an
e aircraft, truck, or building.

i:: Either by direct request, or through the request of another process. additional detail describing the
object will become available. perhaps describing the outline of the nose, tail, and horizontal
stabiiizers. No one feature results in an absolute identification, each merely adds or subtracts

' support for a given hypothesis. A narrow featura request by this process might pin down a specfral
) angle defined by the proposed wings and aircraft body. The resuiting estimate, shown in figure 4-24
may lend enough substance to aircraft subclasses two and three that additional processes are
YO activated, exploring these hypotheses. '
, EDGES 7 '
3::: AMG;' (\ lﬁs ?

) INVESTIGATION OF AIRCRAFT HYPOTHESIS

‘FIRES HYPQTHESES OfF CLASS 2 OR 3.
¥ (SOME FORM OF MEDIUM SIZE TRANSPORT)

% -~ U = EDGES 7
EDGES ?
A — \ J ~~—
"__-‘- EDGES ?
:':_: Figure 4-23: Following the aircraft hypothesis, one process examines
o the hypothesized wing angle, nose, tail, and horizontal stabilizer
o structure.
','-.' As intermediate hypotheses are posted along with relative certainty of identification, processes
j'._‘: based on incorrect hynotheses and high ievel hypotheses which have been replaced by low level
L hypotheses should deactivate, freeing resources lor active pathways.
L _
:::f Evaluation of incoming features by processes expioring aircralt classes two and three may in turn
2
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Figure 4-24: Forinstance, the estimated wing angle lends support to
aircraft class 3.

result in the class two process deactivating, and the class three process spawning processes
exploring the possibility of a DC-8 or L-1011 aircraft based on engine cowling location and wing
features. Shown in figure 4-25, this hierarchical processing would continue until reporting terminals
were reached.

Y/

guory Lacates ‘\F_"‘"’ Locates )
ngtnes ngines
HYPOTHESES FIRED FOR DC-8

e

i % OR L-1011 AIRCRAFT.
| U |
gy gt RS

~
~

\\
=

Figure 4-25: Within the process investigaiing the class thrée hypothesis,
search for the engine and wing length estimates triggers

investigation uf the possibility that the aircraft may be a DC-10 or
g L-1011
=~
-
o
n_'..
b, .v

X %L e M. nL ey me e el N e el e L ey e e A e s - - e e, e = - ~ e - .
AT . g TR SR AN - Y LT, > LIS L T I e A I LIPS AP e T
oy ,};p (P oS R A L P oA 'y -~ LI .. 8 Pl B R S )
R e e e e e e R s e
e :

i Bt Mo B dom R Sae Ko o W S W AR ST WIS W WA WAL, SR VA A




2%
1&
v

AN T S S U Lo B R TR IS Y AT T
-'_-',-.{-_-‘, A N P P TR P A A RS (TR IR AT TR (T A AP A A APTEANE  ) L L=
WS L T ey e T T T A L L AL AT T
PG VRO ST S T o CI R TN A W S I CIP A WAL T T AT A, WO PRI Ak I L DU W R R P S N

82

REFERENCES

[Brodatz 68] P. Brodatz.
Textures: A Photographic Album for Artists and Designers.
Reinhold, New York, 1968.

[Casasent 78] D. Casasent.
Optical Data Processing for Engineers.
Electro-Optical Systems Design :26-36, February, 1978.

[Crowiey 81] J.L. Crowiey.
A representation for visual information.
PhD thesis, Carnegie-Mellon University, Nov., 1981.

[Crowley and Parker 84]
J.L. Crowley and A.C. Parker.
A representation of shape based on peaks and ridges in the difference of low pass
transform.
IEEE Trans..on PAMI , March, 1984,

[Crowiey and Sanderson 84)
J. L. Crowley and A. C. Sanderson.
Multiple Resolution and Probabilistic Matching of 2-D Grey-Scale Shape.
In Proceedings 2nd IEEE Computer Society Workshop on Cornputer Vision,
~ Representation, and Control, pages 95-105. IEEE, May, 1984,

[Crowley and Stern 84)
J.L. Crowley and R.M. Stern.
Fast computation of the difference of low-pass transform.
IEEE Trans on PAMI , March, 1984,

[Haralick 70] R.M. Haralick.
Statistical and structural approaches to texture.
Proc. IEEE 67:786-804, 1970.

[Harwood et al 83]
D. Harwood, M. Subbarao, and L.S. Davis.
Texture Classification by local rank correlation,
Technical Report TR-1314, University of Maryland Computer Science, August,
1983.

[Laws 79] K.l. Laws.
Texture Energy Measures.
In Proc. Image Understanding Workshop, pages pp 47-51. 1979.

[(Mandelbrot 77] B.3. Mandelbrot.
Fractals, Form, Chance, and Dimension.
W.H. Freeman and Co., San Francisco, 1977.

[Mandelbrot 82] B.B. Mandelbrot.
The Fractal Geomelry of Nature.
W.H. Freeman and Co., San Francisco, 1982.

. CAN Nt et
.

«

-~

c~
e

L
-
-

4

SR RL AN

W WP W



cwe TR L - o . - v;---!---x-.-u-wmww

P S

[Pentland 83a]  A. Pentland.
Fractal-based description of natural scenes.
Proc. IEEE CVPR :pp 201-209, July, 1983.

L4

[F T

[Pentland 83b]  A. Pentland.
Fractal Textures.
Proc. IJCAI 1983 :pp. 973-981, 1983.
Karlsruhe, Germany.

" LN

O A A

)
s

f

£

x5 A
e s s s,

NN Mg

,\ T g.-hf‘ ".«.:’._’3 {n

‘.-—~-‘. ., . - » PaP i p ma”
-,“. o o (,'.. ,”-" o ..-l:-ﬁ_a b o *. ! ¢._ _.(-. "{"'(ﬁ- \_ _‘




50

»

v

s e

..

Cl ey
Sote e et :'

N

l&l.:‘-"‘
2 & 2 4

Y S

SNNAAED

(=N » S
AR B

)

'
L PO S

<
-8

Ak

~ .

he MEn £an- S s Soh-inse 2Rl Shas-Biite “Ase i e ke Sen-il e e A -2 an-alie- S Sodn YAy ay S A -5 0" S an i eucaiun A e Al b S INL AN Sen & Sat ""’

83

3= UMDERSTAMDING TECHNIQUES FGR 3D
SCEME INTERPRETATION

»
7>

5.1 INTRODUCTION

In this chapter. we present results in two aspects of the 3D change dntection task: the low-level
problem of analyzing images, and the high-level problem of representing, constructing and updating
the 3D scene model. For the low-level prdcessing, we describe a new method of .computing the
ster2o currespondences whicin can be used to determine the 3D positions of points from a pair of
aerial itnages. For the bhigh-level processing, we describe methods of represanting and consiruacting
sc2ng modcels from multiple views, using rangelinder data. The use of rangefinder data allovwss us to
decouple the high-level processing problem from the low-level problem, for more efficient research

into the high-level problems.

5.2 STEREO BY TWO-LEVEL DYNAMIC PROGRAMIMING

5.2.1 Introduction -

Steren is a useful method of obtaining depth information. The key problem in stereo is a search
proclam which finds the correspondence points between the left and right images, so that, given the
can:icra medel (ie., the relationship between the right and left cameras of the stereo puair), the depth
can ve computed Ly triangulation. In edge based steren techniques, edges in the images are used as
the elements whose correspondences to be found [Grimson and Marr 79, Baker and Binfurd
81, Baker 82, Barnard and Fischler 82]. Even though a general problem of finding correspondences
between images involves the search within thg whole image, the knowledge of the camera model
simplifies this image-to-image correspondence problem into a set of scanline-to-scanline
correspondence nroblems. That is, once a pair of stereo images is rectilied so that the epipolar lines
are horizontal scanlines, a pair of corresponding edqges in the right and left images chould be
searched far only within the same horizontal scanlines. We call this search intra-scanfine search.
This intra-scanline search can be treated as the problem of finding a matching nath on a two-
dimensinnal (2D) search plane whose vertical and horizontal axes are the right and left scanlines. A

dynamic programming technique can handle this search efficicmitly [Baker and Binford 81, Baker 82).

However, if thcre is an edge extending across scanlines, the correspondcnces in one ccanline have

strong dependency on the correspondences in the neighboring scanlines, hecause it twe points are

- on a vertically connected edge in the left image, their corresponding puints should, most likely, lie on
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:Zs:j a vertically connected edge in the right image. The intra-scanline search alone cdoes not take into
account this mutual dependency between scanlines. Therefore. another search is necessary which
A tries to find the consistency among the scanlines. which we call inter-scanline search.

M .

:‘_E:Q By consiclering both intra- and inter-scanline searches. the correspondence problem in stereo can
L be cast as that of finding in a three-dimensional (3D) search space an optimal matching surface that
.-__- most satisfies the intra-scanline matches and inter-scanline consistency. Here. a matching surtace is
J defined by stacking 2D matching paths. where the 2D matching paths are found in a 20 search plane
j whose axes are left-image column position and nght-image column pesition, and the stacking is done
" in the directicn of the row !scanline) number of the images. The cost of the matching surface is
_y defined as {he sum of the costs of the intra-scanline matches on the 2D search planes, while vertically
':'j connected edges provide the consistency constraint across the 2D search planes and thus penalize
those intra-scanline ‘matches which are not consistent across the scanlines. Our stereo matching
uses dynamic programming for performing both the intra-scanline and the inter-scanline searches,
.- and both searches pioceed simultaneously. This method reduces the computation to a feasible
P amount. '
5.2.2 Use of Inter-scanline Constraints

:::;. As mentioned above, for a pair of rectified stereo images, matching edges within the same scanline
- (ie., the intra-scanline search) should be sufficient in principle. However, in practice, there is much
‘. ambiguity in linding correspondences solely by the intra-scanline search. To resolve the ambiguity,
::Ej: we can exploit the consistency constraints that vertically connected edges across the scanlines
;Ej:j provide . Suppose a point on a connected edge u in the right image matches with a point on a
":: connected edge v in the left image on scanline «. Then, other points on these edges should also
match on other scanfines. If edges u and v do not match on scanline (, they should not match on
: other scanlines, either. We call this property inter-scanline consistency constraint. Thus, our
:::: problem is to search for a set of matching paths which gives the optimal correspondence of edges
o within scanlines under the inter-scanline consistency constraint.

5

j'; A few methods have been used to combine the inter-3canline search with the intra-scanline search.
*; Henderson {Henderson, et al. 79] sequentially processed each pair of scanlines and used the result of
“:: one scanline to guide the scarch in the next scanline. However, this method suffers in that the errors
:"‘ made in the earlier scanlines significantly alfect the total results.

-
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_:‘J Bakor |Baker 82] first processed each pair of scanlines independently.  After all the intra-scanline
N malching was done. he used a cooperative process to detect and correct the matching results which
:j violate the consistency constraints. Since this method. however, does not use the inter-scanline
:j: constraints directly in the search, the resuit from the cooperative process is not guaranteed to be
*_:' optimal. Baker suggested the necessity of a search which finds an optimal result satistying the

. consustency constraints in @ 3D search space, but a teasible method was left as an open problem.

,\ ' A struightforward way to achieve a matching which satisfies the inter-scanline constraints is to
., consider all matchings between connected edges in the right and left images. Mowever. since the
. typical number of c::)nngcted adges iz a few to several hundred in each image, this brute force method
b is usually inieasible.

o matching of dynamic

connected edoes programning

«r %’onstraintﬁ )score(cost)

; matching of . :

v edge-del imited intervals g{;;:‘-‘;;uing

3 on scanline pair
ﬁ Figu ré 5-1: Two searches involved in stereo matching

N
hes . We propose to usc dynamic programming, which is used for the intra-scanline search, also for the
o ir 2r-scanline search. These two searches are combined as shown in figure 5-1. One is for the
?\;:f currespondence of all connected edges in the right and left images, und the other is for the
correspondence of edges (actually, intervals delimited by edges) on right and left scanlines under the
' constraint given by the former. The scheme to use dynamic programming in two levels was first
empioyed in the recognition of connected spoked words {Sakce 79]. They used one search for the
. poscible segmentation at word boundaries and the other for the time-warping word matching under
) the constraint given hy the former. In connected word recognition, however, the patltern to be
- processad is a single 1D vector. In our case, a connected edge crosses over multiple scanlines (ie.,
_ 1D vectors). This imeans that we nced a 3D search space which is a stack of 2D search planes for
: intra-scanline matching.
&
4
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Dynamic programming [Aho. Hopcroft and Ullman 74} solves an .V-stage decision process as V
single-stage processes. This reduces the computational complexity to the logarithm of the original
combinatorial one. In order to apply dynamic progromming, however, the original decision process
must satisfy the foliowing two requirements. First, the decision stages must be ordered so that all the |
stages whose results are needed at a given stage have been processed belore then. Second. the |
decision process should be Markovian: that is, at any stage the behavior of the process depends
solely on the current state and does not depend on the previous history. It is not abvious whether
these properties exist in the problem of finding correspondences between connected cdges in stereo

images. but we clarify them in the following sections.

5.2.3 Correspondence Searcir Using Dynamic Programming

5.2.3.1 Intra-scanline search on 2D plane

The problem of obtaining correspondences between edges on the right and left epipolar scanlines
can be solved as a path finding problem on a 2D plane. Figure 5.2 iltustrates this 2D search plane.
The vertical lines show the paositions of edges on the left scaniine and the horizontal ones show those
on the right scanlines We refer to the intersections of those lines as nodes. Nodes in this plane
correspond to the stages in dynamic programming where a decision should be made to select an
optimal path to that node. In the intra.scanline search, the stages'muSt be ordered as t‘bﬂows; When
we examine the correspondence of two edges, one on the right and one on the left scanline, the
edges which are on the lelt of these edges on each scanline must already be processed. For this
purpose, we give indices for edges in left-to-right order on each scaniine: [0:A/] on the right and [0: V]
on the left. Both ends of a scanline are also treated as edges for convenience. It is obvious that the
condition above is satisfied if we process the nodes with smaller indices first. Legal paths which must
be considered are sequences of straight line segment§ from node (0.0) at the upper left corner to
node (A, N) at the lower right corner on a 2D array [0:4/.0:N]. They must go from the upper left to the
lower right corners monotonically due to the above-mentioned condition on ordering. This is
equivalent (o the non-reversal constraint in edge correspondence: that is, the order of matched
edges has to be preserved in the right and left scanlines. This constraint excludes from analysis thin
objects such as wires and poles which may result in positional reversals in the image. A path has a
vertex at node m=(m.n) when right edge m and left edge n are matched.

The cost of a path is defined as follows. Let D(m.k) be the minimal cost of the partial path from
node kto node m. We denote /(m k) as Xm) when kis (0.0). X(m)is the cost of the optimal path to
node m [rom the origin (0.0). The cost of a path is the sum of those of its primitive paths. A primitive
path is a paitial path which containg no vertices and it is ropresented by a straight line segment as
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= Figure 5-2: 2D search plane for intra-scanline search.
Intensity proliles are shown along each axis.
) The horizontal 2xis cotrasponds 1o the left scanline and the vertical one
" corresponds to the right scanline. Vertical and horizontal lines are the edge
positions and path selection is done at their intersections.

shown in figure 5-2. It should be noted that a primitive path actually corresponds to matching the
intervals delimited by edges at the start and end nodes rather than edges themselves. Let d(m.k) be
the cost of the primitive path from node k to node m. Obviously, d(m.k) = D(m. k) and on an optimal

path d(m.k) = D(m k).

Now, D{(m.k) can be defined recursively as:
Dim.k)y=min {d(m.m—i}+ D{(m—ikK)}
{7}

D(x.k)=0 (5.1

where m=(mnn), i=(kD. i=(i)),

v
\

v_'-*-‘
;.:2 0<sism~k 0<jsn—=l i+j50. |
:{: Vector i represents a primitive path coming to node m. When =0, the primitive path is horizontal, as *‘
L la :
|

shawn at (a) in figure 5-2. It corresponds to the case in which a visible part in the leit image is
occluded in the right image. When =0, the primitive path is vertical, as shown at (b). When i>1
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2

E and/or ;> 1, the primitive path skips or ignores beyond / = [ and/or j — | edges on the right and/or left

- scanlines as shown at (c¢) in the figure. Such a path corresponds to the case where some ecdges have

-: no corresponding ones on the other scanhne because of noise.

E The path with cost D(M.0) gives the optimal correspondence between a pair of scanlines.

&

; 5.2.4 Inter-scanline search in 3D space

": The prablem of obtaining a correspondence between edges under the inter-scanline consistency

j: constraints can he viewsd as the probiem of finding a set of paths in a 3D space whiélw is a stack ot 2D

& planes for intra-scanline search. Figure 5-3 illustrates this 3D space. The side faces of this space

correspond to the right and left images of a stereo pair. The cost of a sct of paths is defined as the

sum of the costs of the individual paths in the set. We want to obtain an optimal (ie., the minimal cost)

set of paths satistying the inter-scanline constraints. A pair of connected edges in the right and left

C images make a set of 2D nodes in the 3D space when they share scanline pairs. We refer to this set of

2D nodes as a singie 3D node. The optimal path on a 20 plane is obtained by iterating the selection of
an optimal path at each 2D node. Similarly, the optimal set of paths in a 3D space is obtained by
iterating the selection of an optimal set of paths at each 3D node. Connected edges, 3D nodes, and
sets of paths between 3D nodes are illustrated in figure 5-3.

?;I As described in section 5.2.2, the decision stages must be ordered in dynamic programming. in the

::: intra-scanline search, their ordering was straightforward; it was done by ordering edges from left to

?. right on each scanline. A similar consideration must be given to the inter-scanline search in 3D space

o where the decision stages are the 3D nodes. A 3D node is actually a set of 2D nodes, and the cost at

\j: a 3D node is computed based on the cost obtained by the intra-scanline search on each 2D search

::? plane. This leads to the following condition: When we examine the correspondence 6f two

~ connected edges, one in the right and one in the left image, the connected edges which are on the

8 left of these connected edges in each image must already be processed.

R

‘?, A connected edge u is said to be on the left of u,, if all the edges in u on the scanlines which u and

3 u, share are on the left of those in u,. The "left-of" relationship is transitive; if there is a connected

! edge u, and u is on the left of u, and u, is on the left of Uy, then u is on the left of u, (it u, and u, share

o any scaniines). The order of two connected edges which do not satisfy both of these relations may be

. arbitrarily specitied. We assign an ordering index trom left to right for every connected edge in an
image. This ordering is possible without contradiction when a connected edge never crosses a

; scanline more than once and when two connected edges never intersect each other. Qur edge- ‘

::: tinking process which will be explained in section 4 is deviscd so that it does not produce such cases.
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o Figure §-3: 30 search space for intra- and inter-scanline search.

% This may be viewed as a rectangular solid seen from above.

The side faces correspond to the right and left stereo images. Connected

» edges in each image form sets of intersections (nodes) in this space. Each set
" is called a 3D rnode. Sciection of a sct of paths is done at every 3D ncde.
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Now we will present how the cost of a 3D path is defined. Suppose we assign indices [(:/7] to
connected edges in the right image, and [0:17] in the left. The left and right ends of an image are
treated as connecled edges for convenience: the left ends are assiyned index ('s. Let u=(w.v) be a
3D node macle by a connected edge « in the right image and a connected edge » in the left image. Let
('(u) he the cost of the optimal set of paths which reach to the 3D node u. The cost ((u) is

computed as follows:

e(u)

(tu) = min Z

t--s(u)
{DU . Hu—icu):n+ Clu—i(n):ng
i . (5.2)

(10)=0. ie, C0:;0=0 forall ¢

where u=(uv), (O=0(N.j(1). 0gsi(su 0sj(ngv. i()+j(n0.

elu)
t=s(u)

D(m.k.1) is the cost of the optimal 3D primitive path from node k to nqde m on the 20 plane for

Here, C(u:/) is the cost of the path on scanline ¢ in the cptimal set; that is, C(u)=3 C(us0), and
scanline r. A 3D priﬁ-\itive path is a partial path between two 3D nodes on a 2D search plane and it has
no vertices at the nodeé belonging to a 3D node. So a 3D primitive path is a ¢chain of 20 primitive
paths and an intra-scanline search is necessary\ to obtain the optimal 3D primitive path'on a 2D plane
between two given 3D nodes. The function /(u;t) gives the index of a 2D node belonging to the 3D
node u on the 2D plane for scanline (. The numbers s(u) and e(u) specify resbectively the starting
and ending scanlines between which the 3D node u exists. The cost C(u) is minimized on the
function i(t). A 3D node u-—i(r) gives the start node of the 3D primitive path on scanline 1. The
inter-scaniine constraint is represented by i(t). For exampie, if i(1) is independent of i(1—1), there
are no constraints batween scanlines and the search represented by equation ((5.2)) becomes
equivalent to a set of intra-scaniine searches which are performed independently cn each scanline.

Intuitively, i(1) must be equal to i(1—1) in order to keep the consistency constraint,

The iteration starts at v =(0.0) and computes C(u) for each 3D node v in ascending order of u. At
each 3D node the i{1)'s which give the minimum are recorded. The sequence of 2D primitive paths
which forms the 3D primitive path is also recorded on each scanline. The set of paths which gives
C(U) at the 3D node U=(U.V) (which is the 3D noury .armed by the right ends of stereo images) is
obtained as the optimal set.

It should be noted that when there are no connected edges except for the right and left sides of the
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imayces. the aigorithm ((5.2)) works as a set of intra-scanline searches repealed on each scaniine

independently. In this sense. the 3D algorithm completely contuins the 20 one.

5.2.4.1 Consistiency conslrainls in inter-scanline

Using the term 3D node defined in the previous section, we can describe the inter-scanline
consistency constraints as follows: For any 30 node. either ail corresponding 20 nodes are the
vertices on the sct of paths in the 30 search space, or none of them arc the vertices on the set of
paths We nead to represent this constraint as the relation between i(7) and i(7— 1) in equation (5.2).
To do this. let us consider the example in figure 5.4. Suppose we are ttving to obtain a et of 3D
priniiive palhs which reach to node u. In order to satisty the consistency constraints above, all the
starting points of these paths should be the sume 3D node; thatis i(/)=i(/— ). The cases when the
starting point is a different 3D node are shown as case 2 and case 3 in the figure. In case 2, a new 3D
node appears at scan!ine t and the starting point changes to the new one. Of course, it is possibie
that the starting point does not change to the new 3D node. This will happen if the cost of the paths
having vertices on the 3D node is higher than the cost of the paths not having vertices on it. In case 3,
the 3D node u—i(r="1) disappears on scanline ¢ and the starting point is forced to move elsewhere.

30 node 30 nodo u
path \/g-l
7 t
case 1
30 node 30 node u 3N node 30 node 30 node u
>o7 /
———— t-1

path

/ path \/t-l
t

m / 7

case 2 case 3

Figure 5-4: Three cases for consistency constraint.
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Lot us denote the 3D node u—itr), from which the 3D primitive path starts and reaches to the 3D

node u on scanline 1. by fini(u:r). Then the following rules should be satisfied in each case.

casels frou )= frouii— 1)
cases fim{finku 0.0 = friouii— 1) (5.3)

caseds frodain) = fiml i — 11— 1)

The rules in casc 2 and case 3 require that the decision at 3D node u depend on decisions at
nieceding 3D nodes.  Unfortunately, a decision system with such a property is not Markovian as
described in section 5.2.2. and therefore there is no guarantee of obtaining an optimal solution by
using dynamic programming. This means it we search for a solution using dynamic programming

with those rules, the result might be poorer than that of the 2D algorithm.

in order to assure optimality in dynamic programming, we modify the rules in ((5.3)) as follows.

casel: frm(u.y=frmu;!=—1)
case2:  fro(us0) 2 frm(uit=1) (5.4)

cased: frm(u;t) s frmuit—1)

The new rule for case 2 requires that the new 3D node on scanline f be on the right of the 3D node
that is the starting point on scanline (= 1. For case 3, the new starting node on scanline ¢ should be
on the left of that on scanline (= 1. It should be noted that though the new rules are always satisfied
when the rules in equation ({5.3)) are satisfied, the cdnverse is not true. Thus, under the new rules,
the consistency constraint might not be satisfied at all places. In other words, the constraints
represented by the rules in cquation ((5.4)) are weaker than those of equation ((5.3)). However, since
we can oxpect o cbtain an cptinial colution in dynamic programmirg, we can expect batter results by

the 3D search algorithm than by the 20 search algorithm.

5.2.5 Experiments
implementation of the stereo algorithm which has been presented requires a method of detecting
edges and linking them, and a definition of similarity measures for edge-delimited intervals. The

details of the meihod of detecting edges may be found in [Ohta and Kanade 83].

The computation of cost in our search algorithim is based on the cost of a primitive path on the 2D

search plane. We define the cost of a 2D primitive path as the similarity botween intervals delimited
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by edges in the right und left images on the same scanline. If we let dpoody and I)| o b/ be the
intensity values of the pixels which comprise the two intervals, then the mean and variance of all

pixels in the two intervuls are computed as:

1
Z 72
- i=
ZZ u—m) +- Z(b—'”)z)
-1

In the definition above, both intervals give the same contribution to the mean m and variance o’

IJI-—
>~1—-

(5.5)

—

|_)|._.

even when thoir lengths are ditferent. The cost of the primitive path which matches these intervals is

defined as follows:

Cp=a:\/ K FT° (5.6)

We have applied our stereo algorithm tb images from various domains including synthesized
imabes. urban aerial images, and block scenes. Only the results of urban aerial images are presented

here.

The stereo pairs used here are aerial photographs of the Washington, D.C. area. The first stereo
pair is "white house” and the second one is "pentagon”. They have been rectified usihg the camera
models which was computed by Gennery's program [Gennery 79] using manually selected point

pairs.

Figures 5-5, 5-6. and 5-7 show the original stereo pair, edges and connected edges, for the “white
house" scene, respectively. The image size is 388x388 pixels and the intensity resolution is 8 bits.
This example is an interesting and difficuit one because it includes both buildings and highly textured
trees. Many connected edges are obtained around the building while few are obtained in the textural
part. The disparity maps obtained by the 2D and 3D search algorithms are shown in figure 5-8. Since
the maps are registered in the right image coordinates, the disparity values for pixels on the right wall
of the central building, which is visible in the right image but occluded in the left, are undetermined.
Considerable improvements can be observed at the boundaries of buildings. In the textural part, the

two algorithms provide approximately the same resuits.

We counted the number of positions where the consistz-cy constraint, described in section 5.2.4.1
is not satisfied. Itis 436 in the 2D search and 32 in the 3D search. These numbers quantitatively show
a significant improvement achieved by the 3D search algorithm. The reason the inconsistency is not
completely removed in the 3D case is that we uscd "weaker” rules for the constraint as described

earlier.
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Figures 5-9 shows the “pentagon” stereo pair. The image size is 512x512 pixels. The number of
edges extracted is about 40.000 in each image. The number of connected eclges is about 400 in each
image. Figure 5-10 shows the disparity map obtained by the 3D search algorithm. We can see that
the detailed structures of the roof of the building and the bridge over the highway are clearly
extracted.

5.2.6 Summary

A stereo algorithm which searches for an oplimal solution in a 3D search space using dynamic
programming has been successfully applied to urban aerial images. Perhaps one of the major
reazons that our alynrithm works well for such complex images is as follows. For images which
contain long connected edges such as linear structures in urban scenes, our 3D search scheme
waorks effectively to enforce the consistency constraint. When images do not contain long connected
edges, our stereo algorithm reduces to the ordinary 2D search which works efficiently to match
isolated edges within each scaniine pair. In other words, when inter-Asca'nline constraints are
available, our algorithm fully utilizes them, otherwise it works as the 2D search. This feature v_«ill be
less obvious in segment-based algoriﬁhms, such as in [Medioni and Nevatia 83], which depend heavily

on the connectivity of edges.
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Figure 5-5: The "white house"” sterco pair of urban aerial images.
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Figure 5-6: Edges extracted from the images in figure 5-5.
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Figure 5-7: Connected edges obtained from figure 5-6.
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Figure 5-9: The "pentagon” stereo pair of urban aerial images.
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Thig is registered in the left image coordinates.

Notice that the detailed structures of the building roof

Disparity map obtained for the "pentagon” stereo pair (figure 5-9).
and the bridge over the highway (upper left corner) have been recovered.

Figure 5-10
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5.3 GENERATING DETAILED SCENE DESCRIPTIONS FROM
RANGE IMAGES

5.3.1 Introduction

An important problem for robotics vision is that of generating a 3D description of an unknown scene
trom range data. The range data themselves, a set of 3D surface points. are often not useful for tasks
such as model-based recognition and localization, model-based inspection and verification, and

change detection.

The result of our research is a method to extract a compact, symbolic, three-dimensional
description of polyhedral objects in a scene. Importantly, the descriptions are quite compiete, that is,
most of the visible faces, edges, and vertices are represented. Most previous attempts at range data

analysis did not result in such complete descriptions [Agin 72, Duda, Nitzan, ﬁnd Barrett 79, Oshima
and Shirai 79, Smith and Kanade 84, Tomita and Kanade 84]. (An exception is the work of Sugihara

- [Sugihara 79].)

[ 5.3.2 Approach - _

i The overall goal of this research is to obtain a full symbolic description of a scene from range data
N obtained frdrﬁ multiple views. In our approéch. each view is processed in sequence, and the 3D
;ﬁ;.'j information obtained from each view is used to incrementally construct a model of the scene
- environment.

The main steps followed by the overall system are the following. A description of the scene, in terms

t s
‘ata

of faces, edges, and vertices, is obtained from each view. Descriptions from separate views are then

Py WY

matched to obtain corresponding clements and to obtain the global coordinate transformation. This

it

permits the separate descriptions to be merged, resulting in a more complete overall description of

)

the scene. The matching and merging algorithms are described elsewhere [Herman 85]. Here, we will
explain how the initial descriptions are obtained.

Two general approaches for segmenting range imayes are edge/line extraction [Smith and Kanade
84, Tomita and Kanade 84, Sugihara 79] and region extraction [Faugeras and Hebert 83, Duda,
Nitzan, and Barrett 79, Oshima and Shirai 79]. Our method is based primarily on edge and line
extraction because we are attempting to obtain complete, detailed descriptions of the faces, edges,

and vertices in the scene. Furthermore, our matching algorithm assumes such complete descriptions.

Such descriptions are more difficult to obtain when region segmentation methods are primarily used.
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Our method involves the following steps: (1) acquire the range images using a light-stripe
rangefinder. (2) find edge points in the image. (3) fit linear segments to the edge points using the
Hough transform. (4) connect the segments by extending, shortening, or shifting them, (5) convert the
lines and junctions in the image to 3D edges and vertices, (6) generate faces from the edges in the

scene.

It is interesting to note that although we are working with 3D data, most of the steps in the algorithm
are performed in the 2D image space. This is because algorithms for 2D are often simpler and more
efficient. in both space and time. than those for 3D. One example is finding lines with the Hough

transforin. The 3D version of the algorithm is much more expensive and complicated than the 2D

version,

5.3.3 Range Data Acquisition

The range data we use are obtained with the White Scanner light-stripe rangefinder. The illuminator
is a laser which projects a vertical plane of light into the scene. The intersection of the plane of light
with an object surface results in a light stripe, which is imaged by a camera lying to the left of the
illuminator. The furtler a surface point on the stripe is from the illuminator, the further to the left it will

‘be seen in the camera image. The rangefinder determines the position of the stripe at each camera

“scan line, and triangulation is"u5ed to obtain the 3D coordinates at these positions. The result is

represented as a column vector. When the illuminator is swept across the field of view, we obtain a
sequence of such column vectors, one for each stripe. The sequence of columns forms a range

image (actually a set of images, one each for a binary mask and for x, y, and z values).

Fig. 5-11a shows the mask image for a polyhedral object. Each column in the image corresponds to
a column of light. The rows in the image correspond to camera scan lines. This is called a "mixed
registration” [Smith and Kanade 84). The geometry in this itmage cannot be treated as in a camera
image, since it is formed dilferently. However, the outline of the objecis in this image are very nearly
ihe same as would be seen if the eye were placed at the illuminator. The object as seen from the
camera is reconstructed in Fig. 5-11b.

5.3.4 Threc-dimensional Edge Detection

This section describes how points in the range image th:..2 .-ise from real scene edges are found.
We consider three kinds of edge points: occluding, convex, and concave. Occluding edge points are
located where there is a discontinuity in depth (i.e., the difference in z values betwegn adjacent pixels
exceeds a threshold) or where there is a boundary between data and no data regions.
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Figure 5-11: (a) Mask image in mixed registration. (b) Camera-reconstructed image.
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Convex and concave edge peints are found by examining. in turn, each column in the range image,
and calcutating the 3D curvature at each point. If the curvature is a local maximum or minimum and
exceeds a threshold, the point is a concave or convex edge point, depending on whether the
curvature is positive or negative. The results of this process are shown in Fig. 5-12 for two range
images. where convex poinls are signified by " + ", concave points by "-", and occluding points by

"*". These are the mixed registration images.

Neatice that many occluding points have concave or convex points very near them. We believe that
this is inherently due to the thickness of the light stripes [Yoshida 84]. Fig. 5-13a shows a vertical light
stripe lying on a face with diangonal boundaries, as seen from the camera. As described above, at
each scan line. the rangefinder chooses a point (which is probably near the center of the stripe
thickness) to represent the position of the stripe. Since the stripe's appearance is beveled near the
face boundaries, the center of the stripe is shifted. Since points on a stripe that are further to the left
in the camera image are assumed to arise from scene points further from the illuminator, and vicy
versa, the measured light stripe in Fig. 5-13a results in a slight concavity near the top of the stripe,
and a slight convexity near the bottom. In Fig. 5.-13b, the results are just the opposite, with a
convexity near the top of the stripe and a concavity near the bottom. In Fig. 5-12, this phenomenon
occurs primarily on faces that are highly oblique with respect to the illuminator, since the stripes

appear thicker when wewed from the camera.

5.3.5 Fitting Linear Segments

Once the edge points have been found, we want to fit linear segments to them. The Hough
transform [Duda and Hart 72) is used here. However, the straight-forward method of choosing all cells
in the Hough accumulator whose values exceed a threshold was not successful because clusters
tend to cover several cells and they overlap, resulting in several extracted lines for each cluster. To
get around this problem, as soon as a line is extracted, the effects on the accumulator of all the edge

points corresponding to the line are eliminated. The algorithm we use is the following.

1. Transtorm each point in the edge image to a sinusoidal curve in the r-8 accumulator
space.

2. Choose the accumulator cell (r, @) with the largest value. If the value is less than a
threshold, exit.

3. Find linear clusters af points in the edge image that represent line segments along the
tine (r. #). This is done by searching for points in the edge image within some thicknoss ¢
of the line (r, @), and determining which of these points cluster together. Each resulting
line segment is defined by its 2D end points, its 3D end points, and its 30 line paramcters.
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Figure 5-25: Perspective view of final 3D description generated from Fig.
5.24,
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. techniques will find inner edge chains (e.g.. those that bound a hole in a face) as well as outer ones,

the two sets of chains will not be associated together as belonging to a single tace. Fig. 5-23 shows a

perspective view of the final 3D description generated from the line drawing of Fig. 5-17.

L]

Figure 5-23: Perspective view of final 3D description generated from Fig.
' - 5-17.

5.3.9 Multiple Views

The processing result for the edge image in Fig. 5-12a is shown in Fig. 5-é47 The final 3D
reconstruction is shown in Fig. 5-25. The two sets of range images discussed in this paper are two
views of the same object. The next step in the processing will involve matching the two 3D models and
merging them so as to generate a more complete rhodel. The matching algorithm matches vertices in
the two descriptions, and propagates constraints through the edges and faces. This is one reason
why it has been important to recover almost all vertices, edges, and faces in the scene.

5.4 SUMMARY ’

This chapter has presented results in both low-level and high-level aspects of the 3D change

detection task. For low-level processing, a new method of determining stereo correspondences
which are used in the computation of depth for a pair of aerial images was described. For high-level
processing, we have described our methods of representation and construction scene models from

TSNS

muitiple views. We have bypassed the low-level probiems by using rangefinder Jdata as our input for

-

the high-level processing.
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(a)

(b),

{c)

(d)

(e)

Figure 5-22: Finding seed‘edges to use in traversing faces.
Then, for eacih occluding edge in the scene (e.g., edge AB in Fig. 5-22c), find the next most clockwise
edge as if traversing the occluding edge in the direction opposite to its occluding arrow. If this next
edge is concave or convex (e.g., edge BC in Fig. 5-22c), it is used as a seed, and the traversal

direction is the sume direction used to find the edge.

At this point, the algorithm processes faces with no occluded edges. First, each complete occluding
edge that has not yet been traversed (e.g., AB in Fig. 5-22d) is used as a seed, with the traversal
direction the same as that of the occluding arrow. Finally, each complete concave or convex edge
that has not been traversed in both directions (e.g., CA in Fig. $-22e) is used as a seed, traversing in

the direction(s) not yet traversed.

Each set of traversed edges is used to form a single face, and the 3D positions of the vertices
connecting these edges are used to obtain the plane equation of the face. Although our current
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Frgure 5-21: Recovering the faces by traversing their edges.

traversal direction along that edge. The method of choosing the edge and direction will be described
shortly. To obtain the next edge in the traversal, a simple tést is used to determine the next most
clockwise edge in the traversal direction. In Fig. 5-21, for example, if the edge FG is the seed edge
and the traversal direction is from F to G, then the next most clockwise edge is GH, and its tréversal
direction is from G to H. Successive edges are chosen in this manner until one of the following
conditions is met: (1) an edge which has previously been traversed in the same direction is reached
{e.g., a ceed edge will be reached again for a totally visible face), (2) an incompiete (i.e., partially
occluded) edge is reached (e.g., edge Gl in Fig. 5-21), (3) an occluding edge whose occluding arrow
is opposite to the traversal direction is reached. When one of these-conditions is met, the traversal is
terminated and all the traversed edges are assumed to belong to a single face.

Seed edyes are chosen so that all faces with socme occluded edges are processced before faces with
no occluded edges. The algorjthm proceeds as lollows. First, incomplete occluding edges whose
occluding arrows point away from the incomplete portion of the edge (e.g., edge AB in Fig. 5-22a) are
found. Eazh of these edges is used as a seed, and the traversal direction is that of the occluding
arrow. In Fig. 5-22a, the clockwise traversal resulits in the edges AB, BC, and CD, which are used to
form face F. Next, each incompieie convex and concave edge (e.g., edges AB and EF in Fig. 5-22b) is

used as a seed, and the traversal direction is from the incomplete to the complete portion of the edge.
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* 5.3.8 Cenarate 3D Faces

y ) ) The next step is to extract the 3D faces in the scene. Since a face may be defined by the edges that
:..:::: bound it, faces are found by foliowing (or traversing) their chains of edges. The edge traversal is
':f.': arbitrarily chosen to be clockwise and is two-dimensional, that is, it occurs in the plane of the image.
* Because an occluding edge belongs to one visible face, such edges must be traversed exactly
r:_: once, and only in the direction of the occluding arrow. Because concave and convex edges belong
-ﬁ::j tn two visible faces, such edges must be traversed twice, once in each direction. Fig. 5-21 shows how
f-' the faces of an object may he recovered by traversing the edges. We distinguish two classes of faces,
. “ . those with all their edges visible (e.g., face A in Fig. 5-21) and those with partially or totally occluded
‘ff edges {e.g., face B in Fig. 5-21). Faces in the first class are found by a complete traversal of their
y 'j edges. The traversal can therefore begin with any 2dge on the face. Since faces in the second class
are found by a partial traversal of their edges, we must make certain that the edge with which a
‘:""‘ traversal begins will permit all visible edges to be included.

<.

A face traversal occurs as follows. First an edge, called the "seed” cdge, is chosen nlong with a
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Figure 5-18: Locating the 3D position of a vertex directly from range data
: cometimes results in a large depth error

- Line in __»
T 3-space

- LLuminaton
image /
(mixed

negistration)

~

1RO

sdource 0f et

iLumination ' column C
‘::; Figure 5-19: Calculating the intersection of a line in 3-space with the plane of illumination
’ resuiting in the projecled points p?, p2, and p3. Assuming that each of these points lies on its
: respective line in 3-space, their 3D pogitions are obtuained as described ahove. The 3D position of the
‘ :j:: vertex corresponding to J is then obtained by averaging the 3D positions of p1, p2, and p3.
2
After each junction has been converted into a 3D verlex, it is simple to obtain the 3D line parameters
: of the edyes connecting these vertices.
~
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Figure 5-17: Result of extending dangling ends and merging
" junctions in Fig. 5-16.

extracted from the edge image (Fig. 5-14). To obtain the 3D position of a point in the image known to
lie on a given line in 3 space, we calculate the intersection of the line with the plane of illumination
2 corresponding to the column C in which the point lies (see Fig. 5-19).

. Each junction in Fig. 5-17 has a pointer to a list of all the initially extracted segments (Fig. 5-14) that
ultimately led to the junction. Fig. 5-20 provides an example of how the 3D coordinates uf a junction J
are detcrmined. Suppose J was initially obtained by averaging the 3 intersection points of the
segments L1, L2, and L3. To get its 3D position, J is first projected, in 2D, onto each of its segments,
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.; conservative threshold. -
5
s 5.3.7 Convert to 3D
} .
: Thus far, all of the processing has been in 20, in the mixed registration image. in the next step, all
:; the junctions and segments in the image are converted into 3D vertices and edges. Afterward, the 3D
" _
o faces in the scene will be obtained.
o
The obvious method for getting the 3D position of some point in the image is t& mercly cxtract ils
:: x,y.z2 coordinates from the x,y,z range images. The problem with this method is that it can result in a
.-N large depth error even if there is a small error in the 2D position of the point. To see why, consider Fig.
P2
- 5-18. Suppose that the position of a junction determined by the methods described above is at point
3, - . L , . . .
] a, but the true position of the junction is at point b. It we obtain the 3D coordinates of point a by
' :3:3 extracting them from the x,y,z range images, we would really be extracting the coordinates of a point
"3 that lies significantly inside face A, resulting in a large error in the z coordinate. The more oblique
o
Fc face A is, the greater the error.
:-;3;"- To overcome this problem, we use the known 3-space positions of the lines that werc initially
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Figure 5-15: Connecting intersecting pairs of (extended) line segments.

The thresholds used in the first tWo steps just desbribed are conservative and are only meant to
connect segments that are quite close to each other. lf liberal thresholds were used; connections
would be established between segments that should not be connected. The resuit after these first two
steps is shown in Fig. 5-16. Note that the two end points P1 and P2 in the figure seem to be
"dangling.” In the third step, therefore, a top-down type of process is initiated. We assume that a
dangling end of a segment should probably be extended or shortened by a larger amount than the
previously specitied thresholds. Intersections between such an (extended) segment and other
segments are obtained, and the same tests and procedures as described in the second step are
performed, except that larger thresholds are used.

As a result of this process, all gaps are eliminated. However, lines that should form a single junction
often do not intersect at a single point, resulting in separate junctions. To merge such junctions, a
rectanqular window is placed at each junction point in the image, and all junctions within the window
are replaced by a new junction defined by the averagz casition of all the junctions. The result of this
step is shown in Fig. 5-17. At this point, partially occluded segments are labeled as such. These are
found by checking how many segments form each junction. If a junction is formed by only one
segment, the segment is marked as incomplete. In Fig. 5-17, segments L1 through L5 are incompleote.
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Figure 5-14: Result of fitting line segments to the edge image in Fig,
5-12b.S0lid lines are occluding,
dashed lines are concave, and dot-dash lines are convex.

inside the other (Fig. 5-15c). The former is extended, the latter is shortened, and a junction is formed.
In case 4, the intersection npoint lies inside both segments (Fig. 5-15d), but is beyond the threshold
distance from each end point of on.e of the segments. The other segment is therefore shortened, but a
junction is not formed connecling the two segments. Case 5 is the same as case 4, except the
intersection coint lies outside one segment but inside the other (Fig. 5-15¢).
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4. Climinate the effect on the accumulator of the points lying on the line (r, #). An efficient
way to accomplish this is to decrement each accumulator cell lying on the sinusoidal
. curve corresponding to each point.

5. Go back to step 2. )

SR

Each class of edge points (i.e., convex, concave, and occluding) is treated separataly and
independently. In this way, the resulting line segments can be given the same class labels. Also, the
direction c¢f the occluding arrow for each occluding line is determined as a unit vector in the image

olane. (The occluding surface is on the right side of the arrow.) This is done by comparing the

i )
AL VA

average z values of points ¢n either side of the line segment thai are very near the segment. The
- results of the line fitting are shown in Fig. 5-14, where occluding lines are reprcsented by solid lines,

concave lines by dashed lines, and convex lines by dot-dash lines.

As explained earlier, some cenvex or concave edge points may lie near occludihg edge points. This
i may result in cbnvex or concave line 'segments near occluding line segments. These segments should
be eliminated since they do not correspond to real scene features; they are an artifact of the range
finding process. Fig. 5-14 actually shows the result after such segments have been deleted.

5.3.8 Connect Lines and Form Junctions

Although the basic line segments forming the edges of the object have now been extracted, as
shown in Fig. 5-14, there are still many gaps and inaccuracies near the junctions of the object. Our

PREAPA
TN DO

next step is therefore to fill in these gaps and form junctions where necessary. This is done in three
steps. First, segments that are close and almost collinear are connected. Second, (extended)

Ll
'-l'

x

segments that intersect and are close are connected. Third, if a segment has a dangling (i.e.,

‘v‘ _x'.

K

unconnected)-end point, an attempt is made to connect it with other segments as in the second step,
but using a larger threshold than in this step.

In the first step. if two segments are almcst collinear and have close end points (e.g., segments L1

STl

and L2 in Fig. 5-14), a junction is formed at the point midway between these end points to connect the
two segments.

..
[

‘_,.
S EAN

In the second step, intersecting pairs of (extended) line segments are connected if the intersection
point lies within a given threshold distance of the end points of the segments. We cansider five cases

here. In case 1, the intersection point lies outsida the two segments (Fig. 5-15a). Both are extended
and a junction is formed. In case 2, the intersection point lies inside both segments (Fig. 5-15b). Both 1

are shartened and a junction is formed. In case 3, the intersection point lies outside one segment but
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Figure 5-13: Camera viewpoint of vertical stripes lying on laces with diagonal
boundaries. The measured stripe posit:on results in a concavity or convexity
near its top and bottom.
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2 Figure 5-12: Edge points registered with range images. Convex points are " + ",

" concave points are "-", and occluding points are "*". (1) Same image as Fig.
5-11a. (b) Edge points of another range image.
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Personal communication.
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6.2 PUBLICATIONS

Electrical and Computer Foginvering -- (from start of contract)

1. B.V.K. Vijaya Kumar and C. Canoll, "Loss of Optimnality in Cross-Correlatqis”, JOSA-A,
Vol. 1, 1984, pp. 392-397.

2.D. Casasoent and V. Sharma, "Feature Fxtractors for Distortion-Invariant Robot Vision™,
Optical Engineering. Vol. 23, September/October [ 1984, pp. 492-498.

3. B.V.K. Vijaya Kumar, "Lower Bound for the Suboptimality of Cross-Correlators™, A_p_pllﬁ
Qpucs. Vol 23, July 1984, pp. 2048 2049.

4.D. Casasent, A. Goulzouiis and B.V.K Vijaya Kumar, "Time-Integrating Acousto-Optic
Correlator: Error Source Modeling”, Applied_Ontics, Vol. 23. September 1984, pp.
3230-3237.

5.R.L. Cheatham and D. Casasent, "Hierarchicai Fisher and Moment-Based Pattern
Recogynition”, Pro¢. SPIE, Vol. 504, August 1984, pp. 19-26. '

6. D. Casasent aﬁd R.L. Cheatham, "Hierarchicai Feature-Based Obiject ldentification”,
QSA Topical Meeling or Maghine Vision, March 1985.

7. D. Casasent, ':A Recent Review of Holography in Coherent Optical Pattern Recognition™,

Proc. SPIE; Vol. 532, January 198S.

8. D. "Hybrid Optical/Digital Image Pattern Recognition: A Review", Proc. SPIE, Vol. 528,
January 19865. -

9. W.T. Chang and D. Casasent, "Chord Distributions in Pattern Recognition: Distortion-
Invariance and Parameter Estimation”, Proc, SPIE, Vol. 521, November 1984, pp. 2 6.

10. W.T. Chang, D. Casasent and D. Fetterly, "SDF Control of Correlation Plane Structure for
3-0 Object Representation and Recognition”, Proc. SPIE, Vol. £07, August 1984, pp.
9-18.

11. D. Casasent and R.L. Cheatham, "Image Segmentation and Real-image Tests for an
Optical Moment-Based Feature Extractor”, ics Communications, 51, September 1984,

pp. 227-230.

g 12. D. Casasent, "Coherent Optical Pattern Recognition: A Review", QOptical Engincering,
Bt 24, Special Issue, January 1985, pp. 26-32.
|
-
; 13. D. Casasent and V. Sharma, "Feature Extractors for Distortion-Invariant Robont Vision™,
»‘ Onptical Endgineering, 23, Soptember/Octoher 1984 pp. 492.498.
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2. J.C. Willis, "RAPIDbus: Design of an Extensible Multiprocessor Structure,” Master's
thesis. Carnegie-Mellon University, May, 1984,

3.J.C. Willis, A.C. Sanderson. N.K. Alapati, "Rapidbus: Design of an Extensible
Multiprucessor Structure,” Technical report 84-13, Carnegie-Meiton Robotics Institute.
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2. M. rlerman. "Reprezentation and Incremantal Construction of a Three-Dimensional
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Hrograming”, IEEE Transactions on Pattern Analysis and Machine intelligence, Vol.
PAMI-7:2, 1985, pp. 139-154,

6.2 COMFERENCE PRESENTATICNS AND ..EMINARS

Electrical and Comoputer Engineering --

1.D. Casasent, "Fourier Transiorm Feature-Space Studies”. Presented at the SPIE
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6. D. Cascsant, "Hierarchical Fisher and Moiment-Based Pattern Recognition”, Presented at
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.' 1. M. Herman, "Representation and Incremental Construction of a Three-Dimensional
) Scene Model," presented at the Workshop on Sensors and Algorithms for 3-D Machine
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'\ n
Y - . .
AN 2.F. Tomita and T. Kanade, "A 3D Vision System: Generating and Matching Shape
‘i" Descriptions in Range Images,” presented at the 2nd International Symposium of
) 1 Robotics Research, Kyoto, Japan, August 1984,
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- 3.D. Smith and T. Kanade, "Autonomous Scene Description with Range Imagery"”,
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e
‘- A
NN
LWLy
Y
1%

~ » L3 R I R . T ) L RN T T O K W I | -
R s R T ]
OW e TETTRT RS . .,

G T T Y
3%, {{-. R e L




R f‘

I B 4
PR I [}
L A

fal i By Bu ]

. .»
oy,
*

"

vFr e
.
¥

PRI 'Y

-
-
-
o

o a e aa as s s el a8 bk bR S A B IE A LA A A AW W T T

-

I.Si '1 ]xRY

in Chaplers 2.5, we have described our progress towards achieving i combination ot pattern
recognition. image understanding, and artificial intelligence technigues for cpace-based image
processing, using both optical and digital processing methods. We have achieved results in the areas
of optical teature extraction and sub-pixel target detection, hybrid digital/optical representation and
matching. and model-based three-dimensional scenc interpretation. The remainder of this chapter

aummarizes the results achieved over the past year.

T.AO0PTICAL FEATUREEXTHRALCTION AND SUB-PIXEL TARGET
DETECTICOM HIGHLIGHTS

The highlights cf optical feature extraction work include :

e A new optical processor for detection of in-plane distortion parameter§ from optically
generaied chord distributions.

e A new optical/digital moment processor concept.
e A new hierarchical non-ad-hoc tree structure formulation.
o Successhul initial tcats of lhe moment processor on ship and pipe part data bases.

e Promising initial quantifications of the accuracy to which the distortion paramétgrs of the
object can ke produced in the hybrid moment processor.

o Development of new correlation SDFs.

o Promising initial ATR test results on correlation SDFs.

The highlights of our sub-pixa! fast time change detection/recognition effort include :

» A more unitied and accurate image gz2neration sofiware tor producing detector images
containing sub-pixel moving targets, correlated noise and uncorrelated noise.

o Detailed quantitative results of the perfcrmance of sub-pixel shift cstimators.
» Detailed quantitative results of the performance of various interpolation schemes.

e Introduction of a new and better performance measure for the characterization of
background suppression.

e Analytical and experimental investiyation of the use of double differencing for
background suppression.

o Initial forinukaiion of the more general "space/time filtering™ to enhance the sub-pixel
torget and suppress the background.
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o Investigation of the effects of detector limitations such as limited dynamic range and
detector noise.

o Initial efforts of multi-region image generation.

7.2 ALGORITHMS FORHYBRID DIGITAL/OPTICAL
REPRESENTATION AND MATCHING

This phase of the project has focussed on the development and evaluation of methods which yield

X representations of structural and textural information in an image. and may be used for maiching

imaaes to scene models. The principal results achieved in this research include:

o Probabilistic Graph Matching - Attributed graph structures are used as models of
structural and statistical information in the image. Matching of these graph structures
" using probabilistic similarity methods poses a number of interesting problems in the
- mathematical formalism, in the computational matching algorithms, and in the application
"< . of these methods to real images. We have investigated methods of subgraph .
decomposition which permit branch-and-bound search of the matching tree and provide
efiicient pruning of the possible matches.

e Multiple Resolution Rotation-Invariant Operators - The MRI. (Multiresolution Rotation
Invariant) op@rator and the MRD (Multiresolution Difference) transform have been
introduced to extract structural and textural features of images for use in matching and
interpretation phases of analysis. The MR! is a compiex operator derived from dcrivative
expansions of Gaussian kernels and will have magnitude of response independent of
feature orientation and phase angle of response which provides information about
orientation. The spatial and frequency domain properties of these operators have been
studied and an approximate MR! operator which uses difference of shifted Gaussian
kernels has been derived and shown to be computationally efficient due to the scaling
and shift properties of the Gaussian kernel. The MRI operators have been applied to
aerial images of objects and textures.

- ‘l 'l " " e
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e Texture Analysis - The MRI operators described above have been used to characterize
N and classify textures from aerial images. This set of multiresolution operators permits
2 classification of texture independent of the size and orientation of the texture pattern

itself. The statistical distribution of the magnitude responses is analyzed across the set of
_I operators for regions of the image. Correlation with the corresponding magnitude range
3 and the cor esponding phase distribution provides inforination on the relative scale and
- the relative orientation. Experiments on textures from aerial images and textures from
;' simple patierns have been carried out and compared to previous texture energy
A operators.

- The algorithms studied in this section reflect the iriterdisciplinary nature of the project. The MRI
operators and associated texture measures are particularly well-suited to parallel or optical processor

implementation. They will be implemented and evaluated on the array processor with RAPIDbus host.

Our formulation of the recursive model-matching algorithms is also inlended for implementation on
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this type of architecture with extensions which may integrate symbolic and numerical processing.
The interactive use of parallel and optical preprocessing with hypothesis formation and adaptive

search strategies will be natural continuation of the work completed.

7.3 IMAGE UNDERSTANDING TECHNIQUES FOR 3D SCENE
INTERPIETATION

Qur eftort this year has resulted in techniques dealing with two levels of processing required for the
tisk of describing 2D scenes: the 2D image level. detecling features. such as edges, lines, and

comners, in imagoes. and the 3D scene level, repre“cntmg, constructing, and updating the 3D scene

-mcdal. Qur principal results include:

e Stereo Correspondence using Dynamic Programming (2D Image Level) - We have
described a method to match the epipolar line pairs in a stereo pair and determine a
rather dense depth map of the ‘scene, using intra- and inter-scanline search.
Intra-scanline search determines the correspondence between edges in the same
scanline of the left and right images. This search can ke treated as the problem of finding
a matching path on a 2D search plane whose axes are the right and left scanlines.
Vertically connected edges in the images provide consistency constraints across the 2D
search planes. /nter-scanline search in a 3D search space, which is a stack of the 2D
search planes, finds the vertically connected edges and applies the constraints. By
consudenng both intra- and inter- sc«nlme searches, the corresponderice problem can be
cast as that of finding in a three-dimensioual search space the matching surface that has
the best match scores from intra-scanline search and also satisfies the consistency
constraints from inter-scanline search. This problem is solved using dynamic
programming for both searches.

e Three-Dimensional Model Building and Maintenance (3D Scene Level) - We have
investigated model building using rangefinder data, which is already three dimensional,
bypassing the problem of generating a 3D description from 2D data. We have developed
techniques for representing, constructing, and updating the scene model. The model is
in the form of 3D faces, edges, vertices. and their topology and geometry. A range¢ image
is segmenizd into edge points to which linear segments are fit. The original line
segments are refined to oliminate gans. Faces are then fit to the line drawing. The final
moedel is represented as a graph in terms of the symbolic primitives line, face, edge, and
vertex. Although the final description is three-dimensional, most of the procesing is
done in the two.dimensional image space. Future work will combine madel information
to obtain a full symbolic description ot a scene from range data obtained from multiple
viewpoints.

In the future, we will continue our work on both high-level and low-level image processing that is
requircd for the 2D scene analysis task. Qur effort will focus on analyzing and extracting 2D repetitive
toxtural features from images, improving our stereo algorithm, and represcnting and matching 3D

scone models.
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e Texture - Aerial images of urban scenes contain a large amount of textures made of
repetitive patterns, such as windows on the building fces. The ability to find and
characterize such texturcs is essential to analyze complex images of man-made
structures. We will study the problem of detecting and segmenting the regions made of

T regular arrays of repeated palterns in imayes by using the analysis of variation.

- .
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@ Stereo - Stereo is one of the most important ways of extracting 3D features from images.
A fast. rohust stereo capability would greatly enhance any 3D scenc interpretation
system. and would result in a significant step towards an effective change detection
system. We expect to continue work on the stereo algorithm based on the dynamic
progromming technique described in this report to increase its speed and improve the
quality of its matching results. Qur next step will be to incorporate multi-resolution

A techniques into this algerithm. This should improve malching quality because it is easier

and more rolicble to match at lower-resolution (smaller) images and the results can be

propagated to highar-resolution (larger) images. Speed should also be improved, since
resulis from smaller images can be used to limit the range of search in larger images.

3D Mode! Acquisition and Matching - Once 3D features have been extructed from the
images, they must be accumulated into a coherent inodel and matched with previous
models to determine whether changes in the structure of the scene have occurred.
Matching is also necessary when merging two scene descriptions of the same scene,
perhaps obhtained from difterent viewpoints, into a single consistent description, or when
identifying the-same 3D objects, such as moving objects, in different scenes. We will
continue our investigation into this problem of reconstructing and matching 3D
descriptions from a dense depth map which will be obtained either from stereo or from
. direct range finding sensors. - '
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Appendix A. Hierarchical Feature-Based Object
Identification

David Casasent and R. Lec Cheatham*
Carnegie-Mellon University
Department of Ciectrical and Computer Engineering
/ Pittsburgh, Pennsylvania 15213

. *Present Address: Battelle Northwest, Computers & Information Systems
Section, Richland, Washington 99352

New real ilnagery and distortion parameter estimation accuracy data are presented.

1. INTRODUCTION

identification ure advanced in Section 4.
. PROCESSOR

This signiticantly reduces the computational load per class/aspect .
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ABSTRACT. A multi-level classifier for multi-class 3-D distortion-invariant recognition is described.

A feature space processor for multi-class distortion-invariant pattern recognition is detailed in
Section 2. A moment feature vector space is considered. Test data [1,2] on a robotic database are
summarized in Section 3. Rest!ts on a ship database, using real input imagery with references from

models is presented with attention to preprocessing, distortion parameter estimation, and class

A moment feature space is easily generated optically [3,4,5] or digitally [6]. its outputs can easily be
corrected for processing errors in post-processing [3]. Moments are jointly Gaussian random
variables [2] due to sémpling with respect to in-plane distortions. Thus, they allow use of a Bayesian
classifier and thus can minimize I’c. To determine the class i (object class ¢ and aspect view @) and

the object’s distortions (described by a distortion parameter b) for each computed input moment

N vector m, we calculate
E:‘.:-: g, = (- (D) 27 - m (D)
Q with § calculated iteratively (k is the iteration index) using
P~ P - - i
- P = P YT 2N ET - (B
- The class i that minimizes (1) defines ¢ and the out-cf-plane rotation angle (aspect) ¢ of the input,
whereas h provides estimates of translations, scales, and in-plane rotations. The number of iterations

k can be reduced to 4-6, 2 = ] can be used in (1) and {?), and Jin (2) calculated as an update [1,2).
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The major problem is the large number of aspect-classes i that need potentially be searched.
To relicve this, we use two first-level estimators [1,2] to estimate the aspect (this is achieved by
A= ﬁm/ ﬁ“:) and class (a hierarchical tree is used for this, with the node structure chosen from a
multi-class Fisher projection and with a two-class Fisher discriminant vector used per node). As we
show in Section 3. this reduces the number of aspect-classes i to be searched and thus makes the

processor very computationally efficient. A block diagram of the system is shown in Figure A-1.

Class

INPUT MOMENT | T FISHER | Estimate
929y, Estinate )
IMAGE COMPUTER CLASSIFIER REFERENCE
Aspect mpg
ASPECT Estimate
ESIMTATOR | DATABASE
ITERATIVE NONLINEAR
CLASS (1) LSM CLASS/ASPECT/DISTORTION
ORIENTATION (Q)‘= PARAMETER
CONFIDENCE

Figure A-1: Block diagram of a muiti-level moment feature-space classifier

3. PIPEPART TEST RESULTS

Nine different pipe parts (4 classes) viewed from a 50° depression angle were digiti-zed (1é8 x 128
pixels) with 36 images per part (one image every 10° in aspect) and used as our test database. Test
results are summarized in Table 1. They show: 9 out of 36 references are adequate (Test 1). Use of
the first-level estimétor reduces the number of i to be searched in (1) to 10 (Test 2). The number of
iterations k in (2) is only 6 over a large Ag,. range (Test 3) and Z = /in (1) and (2) is adequate (Test 4).
As seen in Table A-1, the system of Figure A-1 can correctly classify over 97% of the 324 images

(using only 9 x 4 = 36 references).
ISTORTION PARAMETE TIMATION ACCURACY

Related tests on another database [2,7) showed comparable performance and similar operational
parameters. In this database, the reference objects were obtained from models and in tests against
real-world IR images, excellent recognition was obtained. The preprocessing required {7] used only {
simple 1D and 2D histogram operations and thresholding (to maintain low computational overhead).

We now consider the class ¢. aspect ¢, scale a and translation Xy estimation accuracy of the system
for a second five-class database (36 images at 10° aspect intervals per class) using only four

references per class. The true object was the 80° aspect view of the class 1 image. A real IR input

M4 a g e Ao i ~a -



CONDITIONS

PERCENT
CORRECT
(OUT OF 324)

REMARKS

No Aspect Estimator

Different T

90-93.9%

9 Aspect Refs each 40° Used
24 View-Class (Avg) Passed

Table A-1: Representative Pipe Part Data (Different Test Conditions)

image (vs. refercnces obtained from models) at a depression angle 10° different from that of the

refarence set was used with real IR noise present in the input. The tests (Table A-2) show perfect

class and aspect classification for Ag = 107 ~ 107! (for Ag, = 0.5, errors resulted as expected) and
excellent shift (xu in pixels) and scale factor (a) distortion parameter estimation. All distortion

parameters were estimated within 5% accuracy, due to the input resolution, noise, etc. factors.

TEST Ti“fp D /) CLASS/ASPECT
NUMBER SHIFT xQ ESTIMATE ESTIMATE _
| __ .1 _________ 1 _._0_/_0_ I _l . 9 [ Q __________ 1 _/_8_0_° _____
.2 1 _.1.0/15 _ | 1.016/14.22 | ] 1/80° ___.
.3 4. 1.0/25 ) 1.023/23.22 1 1/80° __.
L B 0.5/0 ___|.. 0.499/0.1__1 ____ 1/80° ___.
_____5 ________ 0.75/0___|.. 0.750/0.07 1 ___] 1/80°
6 0.9/0 0.90/0.03 1/80°
Table A-2: Results of Class and Distortion Estimation Tests

(True Class 1, Aspect80°)
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